使用黄金分割法计算Bezier曲线曲率极值的方法介绍

一、问题目标

给定一条 Bezier 曲线 r(t) = (x(t), y(t)),t ∈ [0, 1],其曲率定义为:

κ(t) = | x′(t)·y″(t) − y′(t)·x″(t) | ÷ [ x′(t)² + y′(t)² ]^(3⁄2)

目标:在 t ∈ [0, 1] 内找到使 κ(t) 取得最大值或最小值的参数 t*。

由于 κ(t) 通常无解析极值点,且可能不可导(因含绝对值),可采用黄金分割法 进行数值优化------前提是 κ(t) 在搜索区间内是单峰函数(即只有一个极大值或极小值)。

二、黄金分割法简介

黄金分割法是一种无需导数的一维搜索算法,适用于单峰函数的极值求解。

定义黄金比例常数:

ρ = (√5 − 1) ÷ 2 ≈ 0.6180339887

设当前搜索区间为 [a, b],构造两个内点:

t₁ = b − ρ·(b − a)

t₂ = a + ρ·(b − a)

比较函数值 f(t₁) 与 f(t₂),逐步缩小区间,直到区间长度小于预设精度 ε(如 1×10⁻⁶)。

  • 若求最大值

    若 f(t₁) < f(t₂),则极值点在 [t₁, b],令 a ← t₁

    否则,极值点在 [a, t₂],令 b ← t₂

  • 若求最小值

    若 f(t₁) > f(t₂),则极值点在 [t₁, b],令 a ← t₁

    否则,极值点在 [a, t₂],令 b ← t₂

重复迭代,直至 |b − a| < ε。最终极值点近似为 t* = (a + b) ÷ 2。

三、Bezier 曲线曲率函数的构建(以三次为例)

设三次 Bezier 曲线由四个控制点 P₀, P₁, P₂, P₃ 定义(每个 Pi = (xi, yi))。

1. 一阶导数(速度向量):

v(t) = r′(t) = 3·[(1−t)²·(P₁−P₀) + 2·(1−t)·t·(P₂−P₁) + t²·(P₃−P₂)]

记 v(t) = (vx(t), vy(t))

2. 二阶导数(加速度向量):

a(t) = r″(t) = 6·[(1−t)·(P₂ − 2·P₁ + P₀) + t·(P₃ − 2·P₂ + P₁)]

记 a(t) = (ax(t), ay(t))

3. 曲率分子(叉积):

N(t) = vx(t)·ay(t) − vy(t)·ax(t)

4. 速度模平方:

S(t) = vx(t)² + vy(t)²

5. 曲率函数:

κ(t) = |N(t)| ÷ [S(t)]^(3⁄2) ,当 S(t) > 0;

若 S(t) = 0(曲线驻点),定义 κ(t) = 0 或跳过该点。

实际计算中,为避免除零,可设 S(t) ≥ δ(如 δ = 1×10⁻¹²)。

四、完整计算流程

  1. 预处理

    对 t ∈ [0, 1] 均匀采样(如 100 个点),计算 κ(t),观察是否存在多个峰值。

    若存在多个局部极值,将 [0, 1] 分割为若干疑似单峰子区间(如相邻采样点中 κ 先增后减的区域)。

  2. 对每个单峰子区间 [a, b]

    应用黄金分割法最大化(或最小化)κ(t):

    • 初始化 a, b

    • 设置精度 ε(如 1×10⁻⁶)

    • 迭代更新 t₁, t₂ 和区间,直到收敛

    • 记录该区间内的极值点 t* 和 κ(t*)

  3. 全局比较

    比较所有子区间及端点 t=0、t=1 处的 κ 值,取最大(或最小)者作为全局曲率极值。

五、注意事项

  • 黄金分割法仅适用于单峰区间。若 κ(t) 在 [a, b] 上多峰,结果可能陷入局部极值。
  • 曲率函数在速度为零处(S(t)=0)不光滑,应避开或特殊处理。
  • 对于二次 Bezier 曲线,曲率函数更平滑,通常在 [0,1] 上至多一个极值,可直接在整个区间应用黄金分割法。
相关推荐
wearegogog1237 小时前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
一只小小汤圆7 小时前
几何算法库
算法
Evand J7 小时前
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
开发语言·算法·matlab
leo__5208 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
忆锦紫8 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
t198751288 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法
guygg888 小时前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
老鼠只爱大米8 小时前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列
mit6.8249 小时前
序列化|质数筛|tips|回文dp
算法
rgeshfgreh9 小时前
C++字符串处理:STL string终极指南
java·jvm·算法