Solon AI 开发学习13 - chat - Tool的输入输出架构及生成类

1、Tool输出给 llm 的描述形态

这个形态下 parameters 属性是一个 jsonSchema 规范的结构。也就是工具的"输入架构"(mcp 里的叫法)

json 复制代码
{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "获取指定城市的天气情况",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "根据用户提到的地点推测城市"
                }
            },
            "required": [
                "location"
            ],
            "additionalProperties": False
        },
        "strict": True
    }
}

2、Tool注册给 mcp 的描述形态

这个形态下多了 outputSchema (符合 jsonSchema 规范的输出架构)属性,且 parameters 属性变成了 inputSchema(可以与 outputSchema 呼应上)。

json 复制代码
{
    "name": "get_weather",
    "description": "获取指定城市的天气情况",
    "inputSchema": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "根据用户提到的地点推测城市"
            }
        },
        "required": [
            "location"
        ],
        "additionalProperties": False
    },
    "outputSchema": {
        "type": "string"
    }
}

3、构建Tool的 outputSchema(输出架构)定义

(v3.2.2 后支持)

使用 FunctionToolDesc 描述工具时(即手动构建),通过 returnType 声明

java 复制代码
import org.noear.solon.ai.chat.tool.FunctionToolDesc;

FunctionToolDesc toolDesc = new FunctionToolDesc("get_weather")
    .description("获取指定城市的天气情况")
    .stringParamAdd("location", "根据用户提到的地点推测城市")
    .returnType(String.class)
    .doHandle(args -> {
        return "晴,24度"; // + weatherService.get(location);
    })

使用 MethodFunctionTool 描述工具时(即 @ToolMapping 注解函数构建),通过方法返回类型自动声明

java 复制代码
import org.noear.solon.annotation.Param;
import org.noear.solon.ai.annotation.ToolMapping;
import org.noear.solon.ai.mcp.server.annotation.McpServerEndpoint;

@McpServerEndpoint(sseEndpoint = "/mcp/sse")
public class Tools {
    @ToolMapping(description = "获取指定城市的天气情况")
    public String get_weather(@Param(name = "location", description = "根据用户提到的地点推测城市") String location) {
        return "晴,24度"; // + weatherService.get(location);
    }
}

如果返回的是实体结果时,还可以通过 @Param 注解增加描述

java 复制代码
import org.noear.solon.annotation.Param;
import org.noear.solon.ai.annotation.ToolMapping;
import org.noear.solon.ai.mcp.server.annotation.McpServerEndpoint;

public class UserInfo {
    @Param(description = "用户名")
    private String name;

    @Param(description = "年龄")
    private Integer age;

    @Param(description = "性别。0表示女,1表示男")
    private Integer gender;
}

@McpServerEndpoint(sseEndpoint = "/mcp/sse")
public class Tools {
    @Inject
    UserService userService;

    @ToolMapping(description = "获取用户信息")
    public UserInfo getUserInfo(@Param(description = "用户ID") Long userId) {
        return userService.getUser(userId);
    }
}

4、Tool 的 JsonSchema 生成类 ToolSchemaUtil

现有的Tool架构是由 ToolSchemaUtil 提供支持

方法 描述 备注
buildInputParams 构建 tool 的输出参数描述 支持 @Body 实体自动分解字段
buildInputSchema 构建 tool 输入架构
buildOutputSchema 构建 tool 输出架构
isIgnoreOutputSchema 检测 tool 需要乎略的输出架构 比如单值类型
createSchema 生成一个类型的 JsonSchema 通用方法
addBodyDetector 添加主体注解探测器 第三方框架使用时,可用它扩展
addParamResolver 添加参数注解分析器 同上
addNodeDescribe 添加节点描述处理 同上
相关推荐
PorkCanteen2 小时前
Cursor使用-从问题到解决方案(以及一些通用rules)
前端·ai·ai编程
zlt20002 小时前
从Prompt工程到Skill工程:Agent Skills开放标准彻底改变了AI协作方式
人工智能·ai·agent skill
俊哥V3 小时前
AI一周事件(2026年01月28日-02月03日)
人工智能·ai
一杯原谅绿茶3 小时前
openclaw入门教程自用
ai
AI量化价值投资入门到精通3 小时前
数据清洗:大数据领域的必备技能
大数据·开发语言·ai·php
阿杰学AI3 小时前
AI核心知识83——大语言模型之 AI伦理审查员(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·安全性测试·ai伦理审查员
User_芊芊君子3 小时前
2026 AI Agent 风口必看|四大技术变革+多Agent实战
人工智能·microsoft·ai·ai agent
AI应用架构探索者3 小时前
大数据BI工具的培训与认证体系
大数据·ai
烙印6014 小时前
RAG智能体深度解析(一)
ai·agent·rag
esmap4 小时前
Clawdbot与ESMAP数字孪生技术融合分析
人工智能·计算机视觉·3d·ai·js