【P19 机器学习-分类算法及应用实践】手写数字识别(KNN)

手写字识别

  • 1 手写字的识别 (KNN)
    • 1.1 读取训练集
    • 1.2 读取测试集
    • 1.3 完整程序

1 手写字的识别 (KNN)

通过0,1二值化把手写数字,变化成矩阵

32*32

1.1 读取训练集

python 复制代码
import numpy as np 
from os import listdir  # 读取文件夹下的所有文件,形成一个文件列表

# 图片转矩阵
def img2vector(filename):
    returnVect = np.zeros((1,1024)) # 每个图片矩阵32*32,存为1行
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

#读取数据
hwLabels = []
trainingFileList = listdir('E:\\Progarm\\Py_Program\\HandwritingRecognition\\trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in  range(m):
    fileNameStr=trainingFileList[i]
    fileStr = fileNameStr.split('.')[0]
    classNumStr = int(fileStr.split('_')[0])
    hwLabels.append(classNumStr)
    trainingMat[i,:] = img2vector('E:\\Progarm\\Py_Program\\HandwritingRecognition\\trainingDigits\\%s' % fileNameStr)
python 复制代码
print(trainingFileList)
print(hwLabels)
print(trainingMat)



1.2 读取测试集

python 复制代码
# 读取测试集,执行KNN分类
testFileList = listdir('E:\\Progarm\\Py_Program\\HandwritingRecognition\\testDigits')
k = 3
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
    fileNameStr = testFileList[i]
    fileStr = fileNameStr.split('.')[0]
    classNumStr = int(fileStr.split('_')[0])
    vectorUnderTest = img2vector('E:\\Progarm\\Py_Program\\HandwritingRecognition\\testDigits\\%s' % fileNameStr)
    classifierResult = K.knn(vectorUnderTest,trainingMat,hwLabels,k)
    print('KNN识别的结果是: %d , 实际是: %d' % (classifierResult,classNumStr))
    if classifierResult != classNumStr:
        errorCount +=1.0
python 复制代码
print('训练集数量: %d ,测试集数量: %d' % (m,mTest))
print('错误识别数 : %d , 正确率 : %f ' % (errorCount , (1-errorCount/float(mTest))*100))

1.3 完整程序

python 复制代码
import numpy as np 
from os import listdir # 读取文件夹下的所有文件
import knn as K

# 图片转矩阵
def img2vector(filename):
    returnVect = np.zeros((1,1024)) # 每个图片矩阵32*32,存为1行
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

#读取训练集数据
hwLabels = []
trainingFileList = listdir('E:\\Progarm\\Py_Program\\HandwritingRecognition\\trainingDigits')
m = len(trainingFileList)
trainingMat = np.zeros((m,1024))
for i in  range(m):
    fileNameStr = trainingFileList[i]
    fileStr = fileNameStr.split('.')[0]
    classNumStr = int(fileStr.split('_')[0])
    hwLabels.append(classNumStr)
    trainingMat[i,:] = img2vector('E:\\Progarm\\Py_Program\\HandwritingRecognition\\trainingDigits\\%s' % fileNameStr)


#print(trainingFileList)
#print(hwLabels)
#print(trainingMat)


# 读取测试集,执行KNN分类
testFileList = listdir('E:\\Progarm\\Py_Program\\HandwritingRecognition\\testDigits')
k = 3
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
    fileNameStr = testFileList[i]
    fileStr = fileNameStr.split('.')[0]
    classNumStr = int(fileStr.split('_')[0])
    vectorUnderTest = img2vector('E:\\Progarm\\Py_Program\\HandwritingRecognition\\testDigits\\%s' % fileNameStr)
    classifierResult = K.knn(vectorUnderTest,trainingMat,hwLabels,k)
    print('KNN识别的结果是: %d , 实际是: %d' % (classifierResult,classNumStr))
    if classifierResult != classNumStr:
        errorCount +=1.0
  
print('训练集数量: %d ,测试集数量: %d' % (m,mTest))
print('错误识别数 : %d , 正确率 : %f ' % (errorCount , (1-errorCount/float(mTest))*100))
相关推荐
少云清19 分钟前
【金融项目实战】7_接口测试 _代码实现接口测试(重点)
python·金融项目实战
深蓝电商API20 分钟前
爬虫IP封禁后的自动切换与检测机制
爬虫·python
m0_5500246321 分钟前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
液态不合群25 分钟前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法
B站_计算机毕业设计之家1 小时前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
渣渣苏1 小时前
Langchain实战快速入门
人工智能·python·langchain
lili-felicity1 小时前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
数据知道1 小时前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
喵叔哟1 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
ZH15455891311 小时前
Flutter for OpenHarmony Python学习助手实战:面向对象编程实战的实现
python·学习·flutter