Python 学习-Day9-pandas数据导入导出操作

文章目录

  • [1. 数据导入](#1. 数据导入)
  • [2. 数据导出](#2. 数据导出)
  • [3. 缺失值处理](#3. 缺失值处理)

1. 数据导入

  • Pandas提供了多种方法来读取不同格式的数据文件,以下是一些常见的方法
  1. 读取CSV文件
python 复制代码
import pandas as pd

# 读取CSV文件(默认编码和表头)
df_1 = pd.read_csv("data1.csv")

# 指定编码格式,并设置无表头
df_2 = pd.read_csv("data2.csv", encoding='utf8', header=None)
2. 读取Excel文件
python
# 读取Excel文件
df_3 = pd.read_excel("data3.xlsx")
  1. 读取TXT文件
python 复制代码
# 读取TXT文件,指定分隔符和表头
df_4 = pd.read_table("data4.txt", sep=',', header=None)
# sep=',':指定文件的分隔符为逗号(,)

2. 数据导出

数据整理完毕后,通常需要将处理结果存储至文件中

  1. 导出为CSV文件
python 复制代码
df_1.to_csv("导出.csv", index=True, header=True)
# index=True:表示导出时包含 DataFrame 的索引(行标签),默认值为 True;若设为 False,则不导出索引。
  1. 导出为Excel文件
python 复制代码
df_1.to_excel("导出.xlsx", index=True, header=True)

3. 缺失值处理

  • 在实际数据中,经常会遇到数据缺失的情况。处理缺失值主要有三种方式:
  1. 检测缺失值
    首先需要确定数据中是否存在缺失值以及它们的位置:
python 复制代码
import pandas as pd

# 读取数据文件
df = pd.read_csv(r"data.csv", encoding='gbk', engine='python')

# 进行逻辑判断,判定空值所在的位置
na = df.isnull()
  1. 处理缺失值的三种方法
  • 方法一:填充缺失值
python 复制代码
# 用指定值填充缺失值
df1 = df.fillna('1')
  • 方法二:删除含有缺失值的行
python 复制代码
# 删除缺失值【删除整行数据】
df2 = df.dropna()
print(df2)
  • 方法三:不处理
    在某些情况下,根据分析需求,可以选择保留缺失值不做处理。
相关推荐
优橙教育3 分钟前
通信行业四大热门岗位解析:谁才是数字时代的黄金赛道?
网络·学习·5g
Pyeako9 分钟前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
OPEN-Source11 分钟前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek
廖圣平13 分钟前
从零开始,福袋直播间脚本研究【七】《添加分组和比特浏览器》
python
B站_计算机毕业设计之家13 分钟前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts
西西学代码26 分钟前
A---(1)
学习
厦门小杨28 分钟前
数据驱动制造:智能铺布机如何成为服装工厂数字化的基石
学习·制造·服装厂·服装机械
mr_LuoWei200929 分钟前
python工具:python代码知识库笔记
数据库·python
weixin_3954489129 分钟前
cursor日志
人工智能·python·机器学习
DeanWinchester_mh41 分钟前
DeepSeek新论文火了:不用卷算力,一个数学约束让大模型更聪明
人工智能·学习