LeetCode 3583.统计特殊三元组

给你一个整数数组 nums。

特殊三元组 定义为满足以下条件的下标三元组 (i, j, k):

0 <= i < j < k < n,其中 n = nums.length

nums[i] == nums[j] * 2

nums[k] == nums[j] * 2

返回数组中 特殊三元组 的总数。

由于答案可能非常大,请返回结果对 109 + 7 取余数后的值。

示例 1:

输入: nums = [6,3,6]

输出: 1

解释:

唯一的特殊三元组是 (i, j, k) = (0, 1, 2),其中:

nums[0] = 6, nums[1] = 3, nums[2] = 6

nums[0] = nums[1] * 2 = 3 * 2 = 6

nums[2] = nums[1] * 2 = 3 * 2 = 6

示例 2:

输入: nums = [0,1,0,0]

输出: 1

解释:

唯一的特殊三元组是 (i, j, k) = (0, 2, 3),其中:

nums[0] = 0, nums[2] = 0, nums[3] = 0

nums[0] = nums[2] * 2 = 0 * 2 = 0

nums[3] = nums[2] * 2 = 0 * 2 = 0

示例 3:

输入: nums = [8,4,2,8,4]

输出: 2

解释:

共有两个特殊三元组:

(i, j, k) = (0, 1, 3)

nums[0] = 8, nums[1] = 4, nums[3] = 8

nums[0] = nums[1] * 2 = 4 * 2 = 8

nums[3] = nums[1] * 2 = 4 * 2 = 8

(i, j, k) = (1, 2, 4)

nums[1] = 4, nums[2] = 2, nums[4] = 4

nums[1] = nums[2] * 2 = 2 * 2 = 4

nums[4] = nums[2] * 2 = 2 * 2 = 4

提示:

3 <= n == nums.length <= 105^55

0 <= nums[i] <= 105^55

法一:先记录整个数组中每个数字的出现次数作为后缀数组,然后遍历nums,枚举j,记录下来前面出现过的数字及其频数,找出所有特殊三元组即可:

cpp 复制代码
class Solution {
public:
    int specialTriplets(vector<int>& nums) {
        int n = nums.size();

        unordered_map<int, int> suf;
        for (int num : nums) {
            ++suf[num];
        }

        unordered_map<int, int> pre;

        long long ans = 0;

        for (int num : nums) {
            --suf[num];

            ans += (long long)pre[num * 2] * suf[num * 2];

            ++pre[num];
        }

        return ans % (long long)(1e9 + 7);
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

法二:一次遍历,枚举k:

cpp 复制代码
class Solution {
public:
    int specialTriplets(vector<int>& nums) {
        int n = nums.size();
        
        unordered_map<int, int> cnt1;
        unordered_map<int, long long> cnt2;

        long long ans = 0;

        for (int num : nums) {
            // 此时num当成k,看有多少个ij对符合条件
            if (!(num & 1)) {
                ans += cnt2[num / 2];
            }

            // 此时num当成j,看有多少个i符合条件
            cnt2[num] += cnt1[num * 2];
            // 此时num当成i
            ++cnt1[num];
        }

        return ans % (long long)(1e9 + 7);
    }
};

此算法时间复杂度为O(n),空间复杂度为O(n)。

相关推荐
啊阿狸不会拉杆2 分钟前
《数字图像处理》第 10 章 - 图像分割
图像处理·人工智能·深度学习·算法·计算机视觉·数字图像处理
早川9193 分钟前
9种常用排序算法总结
数据结构·算法·排序算法
Yupureki16 分钟前
《算法竞赛从入门到国奖》算法基础:入门篇-离散化
c语言·数据结构·c++·算法·visual studio
散峰而望18 分钟前
OJ 题目的做题模式和相关报错情况
java·c语言·数据结构·c++·vscode·算法·visual studio code
Mixtral21 分钟前
2026年面试记录转写工具深度测评:3款工具准确率与效率对比
人工智能·面试·职场和发展·语音识别·语音转文字
zc.ovo30 分钟前
线段树优化建图
数据结构·c++·算法·图论
WaWaJie_Ngen31 分钟前
C++实现一笔画游戏
c++·算法·游戏·游戏程序·课程设计
程序员-King.33 分钟前
day140—前后指针—删除排序链表中的重复元素Ⅱ(LeetCode-82)
数据结构·算法·leetcode·链表
小尧嵌入式34 分钟前
【Linux开发一】类间相互使用|继承类和构造写法|虚函数实现多态|五子棋游戏|整数相除混合小数|括号使用|最长问题
开发语言·c++·算法·游戏
Remember_99334 分钟前
【JavaSE】一站式掌握Java面向对象编程:从类与对象到继承、多态、抽象与接口
java·开发语言·数据结构·ide·git·leetcode·eclipse