ai(三)环境资源管理

1.查看电脑资源

首先是硬件资源,电脑硬件资源决定了这台电脑上能进行哪些开发操作,硬件不行,可买硬件改装或者直接用云部署和训练,或者先进行简单的小模型的调用和开发,不进行复杂的训练和微调。

在硬件的基础上,再进行软件的配置安装。

1.硬件资源检查 (有的是双显卡的,可问ai资源检查命令,看看显卡配置)

查看CPU信息

lscpu

cat /proc/cpuinfo | grep "model name" | head -1

查看内存

free -h

cat /proc/meminfo | grep MemTotal

查看磁盘空间

df -h

查看GPU信息(如果有)

nvidia-smi

lspci | grep -i nvidia

把数据直接复制丢给ai,让ai回复目前硬件条件能进行哪些ai开发操作

2.软件检查

检查Python(推荐3.10以上)和pip

python --version

pip --version

检查conda环境和torch

conda --version

conda info --envs

conda list | grep -E "(torch|tensorflow|transformers)"

##缺什么直接问ai进行下载,推荐下载anconda后,用conda命令下载torch|tensorflow|transformers等,兼容性更好。

2.不同conda虚拟环境下,库的安装

根据之前ai给你的推荐的开发操作和项目,可创建多个/一个虚拟环境,不同环境下,根据需求进行库的安装:

如果你只需要加载模型推理:

需要:transformers, sentencepiece, accelerate

如果你需要训练模型:

需要:transformers, datasets, metrics, torch, accelerate

如果你只需要使用预训练模型:

需要:transformers, sentencepiece(可能不需要datasets, metrics)

或者,直接简单一点,基础安装,然后缺啥补啥

第一步:基础安装

pip install transformers sentencepiece

第二步:运行代码,看报错信息

python your_script.py

第三步:根据报错补充安装

如果报错缺少accelerate:pip install accelerate

如果报错缺少datasets:pip install datasets

3.模型选择,下载,部署(推荐modelscope)

3.1 先根据需求确定模型的系列,可上网搜索或者询问ai,推荐

一般是直接选择Qwen系列就行,但是也可以从Tiny系列的小模型开始练手。

3.2 选定后缀格式,估算内存占比

01 GGUF​------CPU推理、低资源环境(大部分新手的选择,因为硬件条件不够)

02 PyTorch(.bin)​------GPU训练、完整功能

03 Safetensors​------安全推理、快速加载

04 ONNX​------生产部署、跨平台

选定后根据官网教程下载即可。

交互方式有三种:命令行对话交互,网页交互,openAI交互。

相关推荐
FPGA_ADDA20 小时前
ORIN+FPGA 高速采集AI 智能处理板
人工智能·fpga开发
mubei-12320 小时前
DPR:用于开放域问答的密集段落检索
人工智能·llm·检索增强生成·文本检索算法
GAOJ_K20 小时前
滚柱导轨精度等级如何匹配应用场景?
人工智能·科技·机器人·自动化·制造
RPA机器人就选八爪鱼20 小时前
RPA在银行IT运维领域的应用场景与价值分析
大数据·运维·数据库·人工智能·机器人·rpa
Niuguangshuo20 小时前
# PyTorch 中 `nn.ModuleList` 详解
人工智能·pytorch·python
2501_9428189120 小时前
AI 多模态全栈项目实战:Vue3 + Node 打造 TTS+ASR 全家桶!
vue.js·人工智能·node.js
CICI1314141320 小时前
藦卡机器人:让焊接更洁净、更精准、更智能
大数据·人工智能
嵌入式老牛20 小时前
面向能源领域的AI大模型工程化落地方法
人工智能·能源
天竺鼠不该去劝架20 小时前
金融智能体三大核心场景:银行运营、证券研究、保险理赔效率提升路径
人工智能·科技·自动化
Small___ming20 小时前
【人工智能基础】深度学习归一化层完全指南:从入门到精通
人工智能·深度学习·归一化