ai(三)环境资源管理

1.查看电脑资源

首先是硬件资源,电脑硬件资源决定了这台电脑上能进行哪些开发操作,硬件不行,可买硬件改装或者直接用云部署和训练,或者先进行简单的小模型的调用和开发,不进行复杂的训练和微调。

在硬件的基础上,再进行软件的配置安装。

1.硬件资源检查 (有的是双显卡的,可问ai资源检查命令,看看显卡配置)

查看CPU信息

lscpu

cat /proc/cpuinfo | grep "model name" | head -1

查看内存

free -h

cat /proc/meminfo | grep MemTotal

查看磁盘空间

df -h

查看GPU信息(如果有)

nvidia-smi

lspci | grep -i nvidia

把数据直接复制丢给ai,让ai回复目前硬件条件能进行哪些ai开发操作

2.软件检查

检查Python(推荐3.10以上)和pip

python --version

pip --version

检查conda环境和torch

conda --version

conda info --envs

conda list | grep -E "(torch|tensorflow|transformers)"

##缺什么直接问ai进行下载,推荐下载anconda后,用conda命令下载torch|tensorflow|transformers等,兼容性更好。

2.不同conda虚拟环境下,库的安装

根据之前ai给你的推荐的开发操作和项目,可创建多个/一个虚拟环境,不同环境下,根据需求进行库的安装:

如果你只需要加载模型推理:

需要:transformers, sentencepiece, accelerate

如果你需要训练模型:

需要:transformers, datasets, metrics, torch, accelerate

如果你只需要使用预训练模型:

需要:transformers, sentencepiece(可能不需要datasets, metrics)

或者,直接简单一点,基础安装,然后缺啥补啥

第一步:基础安装

pip install transformers sentencepiece

第二步:运行代码,看报错信息

python your_script.py

第三步:根据报错补充安装

如果报错缺少accelerate:pip install accelerate

如果报错缺少datasets:pip install datasets

3.模型选择,下载,部署(推荐modelscope)

3.1 先根据需求确定模型的系列,可上网搜索或者询问ai,推荐

一般是直接选择Qwen系列就行,但是也可以从Tiny系列的小模型开始练手。

3.2 选定后缀格式,估算内存占比

01 GGUF​------CPU推理、低资源环境(大部分新手的选择,因为硬件条件不够)

02 PyTorch(.bin)​------GPU训练、完整功能

03 Safetensors​------安全推理、快速加载

04 ONNX​------生产部署、跨平台

选定后根据官网教程下载即可。

交互方式有三种:命令行对话交互,网页交互,openAI交互。

相关推荐
那个村的李富贵13 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者15 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR15 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky16 小时前
大模型生成PPT的技术原理
人工智能
禁默16 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切17 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒17 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站17 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵17 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰17 小时前
[python]-AI大模型
开发语言·人工智能·python