seatunnel-一种场景mysqlcdc同步进入clickhouse基于2.3.11版本

seatunnel-一种场景mysqlcdc同步进入clickhouse基于2.3.11版本

MySQL CDC 到 ClickHouse 完整数据流转分析

概述

本文档详细分析在 startup_mode="initial" 模式下,数据从 MySQL CDC Source 读取到 ClickHouse Sink 的完整流转过程。我们将深入探讨每个环节的具体函数调用链、数据转换过程以及关键实现细节。

整体流程概览

sql 复制代码
MySQL Binlog/Snapshot → CDC Source Reader → SeaTunnel Row → ClickHouse Sink Writer → ClickHouse

详细函数调用链分析

第一阶段:任务启动与初始化

1.1 SeaTunnel 任务启动
scss 复制代码
SeaTunnel.run(command) → command.execute() → TaskExecution.execute()

入口函数 : org.apache.seatunnel.core.starter.SeaTunnel.run()

  • • 接收命令行参数,启动 SeaTunnel 任务
  • • 调用具体的执行命令
1.2 Source 初始化
scss 复制代码
MySqlIncrementalSource.createReader() → IncrementalSourceReader() → MySqlDialect.createFetchTaskContext()

关键函数 : MySqlIncrementalSource.createReader()

java 复制代码
@Override
public SourceReader createReader(SourceReader.Context context) throws Exception {
    // 创建增量源读取器
    return new IncrementalSourceReader<>(
        dataSourceDialect,
        elementsQueue,
        splitReaderSupplier,
        recordEmitter,
        options,
        context,
        configFactory.create(0),
        deserializationSchema
    );
}
1.3 Sink 初始化
scss 复制代码
ClickhouseSink.createWriter() → ClickhouseSinkWriter() → initStatementMap()

关键函数 : ClickhouseSink.createWriter()

java 复制代码
@Override
public ClickhouseSinkWriter createWriter(SinkWriter.Context context) throws IOException {
    // 1. 创建 ClickHouse 节点连接
    List nodes = ClickhouseUtil.createNodes(readonlyConfig);
    
    // 2. 创建代理连接
    ClickhouseProxy proxy = new ClickhouseProxy(nodes.get(0));
    
    // 3. 获取表结构信息
    Map tableSchema = proxy.getClickhouseTableSchema(readonlyConfig.get(TABLE));
    
    // 4. 创建分片路由器
    ShardRouter shardRouter = new ShardRouter(proxy, option.getShardMetadata());
    
    // 5. 创建批次执行器映射
    Map statementMap = initStatementMap();
    
    return new ClickhouseSinkWriter(option, context);
}

第二阶段:数据分片与分配(Source 端)

2.1 分片分配器初始化
复制代码
IncrementalSourceEnumerator → HybridSplitAssigner → MySqlChunkSplitter

关键函数 : HybridSplitAssigner.getNext()

kotlin 复制代码
@Override
public Optional getNext() {
    // 1. 首先分配快照分片
    if (!snapshotAssigner.isFinished()) {
        return snapshotAssigner.getNext();
    }
    
    // 2. 快照完成后分配增量分片
    if (incrementalSplitAssigner != null) {
        return incrementalSplitAssigner.getNext();
    }
    
    return Optional.empty();
}
2.2 分片算法实现
scss 复制代码
MySqlChunkSplitter.queryMinMax() → MySqlUtils.queryMinMax() → buildSplitScanQuery()

关键函数 : MySqlUtils.queryMinMax()

scss 复制代码
public static Object[] queryMinMax(JdbcConnection jdbc, TableId tableId, String columnName) throws SQLException {
    final String minMaxQuery = String.format(
        &#34;SELECT MIN(%s), MAX(%s) FROM %s&#34;,
        quote(columnName), quote(columnName), quote(tableId)
    );
    
    return jdbc.queryAndMap(minMaxQuery, rs -> {
        if (!rs.next()) {
            throw new SQLException(String.format(&#34;No result returned after running query [%s]&#34;, minMaxQuery));
        }
        return rowToArray(rs, 2);
    });
}

第三阶段:全量数据读取(Source 端)

3.1 快照任务执行
scss 复制代码
MySqlSnapshotFetchTask.execute() → MySqlSnapshotSplitReadTask.execute() → doExecute()

关键函数 : MySqlSnapshotSplitReadTask.doExecute()

ini 复制代码
@Override
protected SnapshotResult doExecute(
        ChangeEventSourceContext context,
        MySqlOffsetContext previousOffset,
        SnapshotContext snapshotContext,
        SnapshottingTask snapshottingTask) throws Exception {
    
    final MySqlSnapshotContext ctx = (MySqlSnapshotContext) snapshotContext;
    ctx.offset = offsetContext;
    
    // 步骤1:确定低水位标记(开始时的 binlog 位置)
    final BinlogOffset lowWatermark = currentBinlogOffset(jdbcConnection);
    LOG.info(&#34;Snapshot step 1 - Determining low watermark {} for split {}&#34;, lowWatermark, snapshotSplit);
    ((SnapshotSplitChangeEventSourceContext) context).setLowWatermark(lowWatermark);
    dispatcher.dispatchWatermarkEvent(
        ctx.partition.getSourcePartition(), snapshotSplit, lowWatermark, WatermarkKind.LOW);
    
    // 步骤2:快照数据
    LOG.info(&#34;Snapshot step 2 - Snapshotting data&#34;);
    createDataEvents(ctx, snapshotSplit.getTableId());
    
    // 步骤3:确定高水位标记(结束时的 binlog 位置)
    final BinlogOffset highWatermark = currentBinlogOffset(jdbcConnection);
    LOG.info(&#34;Snapshot step 3 - Determining high watermark {} for split {}&#34;, highWatermark, snapshotSplit);
    ((SnapshotSplitChangeEventSourceContext) context).setHighWatermark(highWatermark);
    dispatcher.dispatchWatermarkEvent(
        ctx.partition.getSourcePartition(), snapshotSplit, highWatermark, WatermarkKind.HIGH);
    
    return SnapshotResult.completed(ctx.offset);
}
3.2 数据事件创建
scss 复制代码
createDataEvents() → createDataEventsForTable() → createDataEventsForTable()

关键函数 : MySqlSnapshotSplitReadTask.createDataEventsForTable()

ini 复制代码
private void createDataEventsForTable(
        MySqlSnapshotContext snapshotContext,
        EventDispatcher.SnapshotReceiver snapshotReceiver,
        Table table) throws InterruptedException {
    
    long exportStart = clock.currentTimeInMillis();
    LOG.info(&#34;Exporting data from split '{}' of table {}&#34;, snapshotSplit.splitId(), table.id());
    
    // 构建分片查询 SQL
    final String selectSql = buildSplitScanQuery(
        snapshotSplit.getTableId(),
        snapshotSplit.getSplitKeyType(),
        snapshotSplit.getSplitStart() == null,
        snapshotSplit.getSplitEnd() == null
    );
    
    // 执行查询并创建数据事件
    try (PreparedStatement statement = readTableSplitDataStatement(selectSql, snapshotSplit);
         ResultSet resultSet = statement.executeQuery()) {
        
        ColumnUtils.ColumnArray columnArray = ColumnUtils.toArray(table, resultSet.getMetaData());
        long rows = 0;
        Timer logTimer = getTableScanLogTimer();
        
        while (resultSet.next()) {
            rows++;
            final Object[] row = new Object[columnArray.getGreatestColumnPosition()];
            
            // 从 ResultSet 中提取数据
            for (int i = 0; i < columnArray.getColumns().length; i++) {
                Column column = columnArray.getColumns()[i];
                int position = columnArray.getColumnPositions()[i];
                row[position - 1] = readColumnValue(resultSet, i + 1, column);
            }
            
            // 创建快照变更记录
            SnapshotChangeRecordEmitter recordEmitter = new SnapshotChangeRecordEmitter(
                partition, offsetContext, table.id(), row, clock.currentTimeAsInstant()
            );
            
            // 分发数据变更事件
            dispatcher.dispatchSnapshotEvent(snapshotContext.partition, table.id(), recordEmitter);
            
            // 定期记录进度
            if (logTimer.expired()) {
                LOG.info(&#34;Exported {} records for table '{}' from split '{}'&#34;, rows, table.id(), snapshotSplit.splitId());
                logTimer = getTableScanLogTimer();
            }
        }
        
        LOG.info(&#34;Export {} records for table '{}' from split '{}'&#34;, rows, table.id(), snapshotSplit.splitId());
    }
}

第四阶段:数据反序列化转换

4.1 Debezium 事件转换
scss 复制代码
SeaTunnelRowDebeziumDeserializeSchema.deserialize() → extractAfterRow()/extractBeforeRow()

关键函数 : SeaTunnelRowDebeziumDeserializeSchema.deserializeDataChangeRecord()

ini 复制代码
private void deserializeDataChangeRecord(SourceRecord record, Collector collector) throws Exception {
    Envelope.Operation operation = Envelope.operationFor(record);
    Struct messageStruct = (Struct) record.value();
    Schema valueSchema = record.valueSchema();
    TablePath tablePath = SourceRecordUtils.getTablePath(record);
    String tableId = tablePath.toString();
    
    // 获取对应表的转换器
    SeaTunnelRowDebeziumDeserializationConverters converters = tableRowConverters.get(tableId);
    
    Long fetchTimestamp = SourceRecordUtils.getFetchTimestamp(record);
    Long messageTimestamp = SourceRecordUtils.getMessageTimestamp(record);
    long delay = -1L;
    if (fetchTimestamp != null && messageTimestamp != null) {
        delay = fetchTimestamp - messageTimestamp;
    }
    
    if (operation == Envelope.Operation.CREATE || operation == Envelope.Operation.READ) {
        // INSERT 操作(全量快照中的数据也标记为 INSERT)
        SeaTunnelRow insert = extractAfterRow(converters, record, messageStruct, valueSchema);
        insert.setRowKind(RowKind.INSERT);
        insert.setTableId(tableId);
        MetadataUtil.setDelay(insert, delay);
        MetadataUtil.setEventTime(insert, fetchTimestamp);
        collector.collect(insert);
        
    } else if (operation == Envelope.Operation.DELETE) {
        // DELETE 操作
        SeaTunnelRow delete = extractBeforeRow(converters, record, messageStruct, valueSchema);
        delete.setRowKind(RowKind.DELETE);
        delete.setTableId(tableId);
        MetadataUtil.setDelay(delete, delay);
        MetadataUtil.setEventTime(delete, fetchTimestamp);
        collector.collect(delete);
        
    } else if (operation == Envelope.Operation.UPDATE) {
        // UPDATE 操作(生成两行:UPDATE_BEFORE 和 UPDATE_AFTER)
        SeaTunnelRow before = extractBeforeRow(converters, record, messageStruct, valueSchema);
        before.setRowKind(RowKind.UPDATE_BEFORE);
        before.setTableId(tableId);
        MetadataUtil.setDelay(before, delay);
        MetadataUtil.setEventTime(before, fetchTimestamp);
        collector.collect(before);
        
        SeaTunnelRow after = extractAfterRow(converters, record, messageStruct, valueSchema);
        after.setRowKind(RowKind.UPDATE_AFTER);
        after.setTableId(tableId);
        MetadataUtil.setDelay(after, delay);
        MetadataUtil.setEventTime(after, fetchTimestamp);
        collector.collect(after);
    }
}
4.2 数据类型转换
scss 复制代码
extractAfterRow() → converters.getAfterRowConverter().convert() → RowConverter

关键函数 : SeaTunnelRowDebeziumDeserializationConverters.extractAfterRow()

ini 复制代码
public SeaTunnelRow extractAfterRow(SourceRecord record, Struct value, Schema valueSchema) throws Exception {
    Struct after = value.getStruct(Envelope.FieldName.AFTER);
    Schema afterSchema = valueSchema.field(Envelope.FieldName.AFTER).schema();
    
    SeaTunnelRow row = new SeaTunnelRow(fieldConverters.length);
    for (int i = 0; i < fieldConverters.length; i++) {
        String fieldName = fieldNames[i];
        Object fieldValue = after.get(fieldName);
        Object convertedValue = fieldConverters[i].convert(fieldValue);
        row.setField(i, convertedValue);
    }
    
    // 设置元数据字段
    for (int i = 0; i < metadataConverters.length; i++) {
        row.setField(fieldConverters.length + i, metadataConverters[i].convert(record));
    }
    
    return row;
}

第五阶段:数据写入 ClickHouse

5.1 Sink Writer 接收数据
scss 复制代码
ClickhouseSinkWriter.write() → shardRouter.getShard() → addIntoBatch()

关键函数 : ClickhouseSinkWriter.write()

scss 复制代码
@Override
public void write(SeaTunnelRow element) throws IOException {
    // 1. 确定分片键值
    Object shardKey = null;
    if (StringUtils.isNotEmpty(this.option.getShardMetadata().getShardKey())) {
        int i = this.option.getSeaTunnelRowType().indexOf(this.option.getShardMetadata().getShardKey());
        shardKey = element.getField(i);
    }
    
    // 2. 路由到目标分片
    ClickhouseBatchStatement statement = statementMap.get(shardRouter.getShard(shardKey));
    JdbcBatchStatementExecutor clickHouseStatement = statement.getJdbcBatchStatementExecutor();
    IntHolder sizeHolder = statement.getIntHolder();
    
    // 3. 添加到批次
    addIntoBatch(element, clickHouseStatement);
    sizeHolder.setValue(sizeHolder.getValue() + 1);
    
    // 4. 批量刷新
    if (sizeHolder.getValue() >= option.getBulkSize()) {
        flush(clickHouseStatement);
        sizeHolder.setValue(0);
    }
}
5.2 分片路由算法
scss 复制代码
ShardRouter.getShard() → HASH_INSTANCE.hash() → TreeMap.lowerEntry()

关键函数 : ShardRouter.getShard()

scss 复制代码
public Shard getShard(Object shardValue) {
    if (!splitMode) {
        return shards.firstEntry().getValue();
    }
    
    if (StringUtils.isEmpty(shardKey) || shardValue == null) {
        // 没有分片键时随机选择
        return shards.lowerEntry(threadLocalRandom.nextInt(shardWeightCount) + 1).getValue();
    }
    
    // 使用 XXHash64 进行一致性哈希
    int offset = (int) ((HASH_INSTANCE.hash(
        ByteBuffer.wrap(shardValue.toString().getBytes(StandardCharsets.UTF_8)), 0) & Long.MAX_VALUE)
        % shardWeightCount);
    
    return shards.lowerEntry(offset + 1).getValue();
}
5.3 批量执行器处理
scss 复制代码
JdbcBatchStatementExecutorBuilder.build() → SimpleBatchStatementExecutor → executeBatch()

关键函数 : SimpleBatchStatementExecutor.executeBatch()

csharp 复制代码
@Override
public void executeBatch() throws SQLException {
    if (batchCount > 0) {
        try {
            // 执行批量插入
            statement.executeBatch();
            connection.commit();
            batchCount = 0;
        } catch (SQLException e) {
            connection.rollback();
            throw new ClickhouseConnectorException(
                CommonErrorCodeDeprecated.FLUSH_DATA_FAILED,
                &#34;Clickhouse execute batch statement error&#34;,
                e
            );
        }
    }
}
5.4 数据类型注入
scss 复制代码
JdbcRowConverter.toExternal() → fieldInjectFunctionMap.get().injectFields()

关键函数 : JdbcRowConverter.toExternal()

ini 复制代码
public PreparedStatement toExternal(SeaTunnelRow row, PreparedStatement statement) throws SQLException {
    for (int i = 0; i < projectionFields.length; i++) {
        String fieldName = projectionFields[i];
        Object fieldValue = fieldGetterMap.get(fieldName).apply(row);
        
        if (fieldValue == null) {
            statement.setObject(i + 1, null);
            continue;
        }
        
        // 使用对应的注入函数处理字段值
        fieldInjectFunctionMap
            .getOrDefault(fieldName, DEFAULT_INJECT_FUNCTION)
            .injectFields(statement, i + 1, fieldValue);
    }
    return statement;
}

第六阶段:增量阶段切换

6.1 快照完成检测
scss 复制代码
IncrementalSourceReader.onSplitFinished() → reportFinishedSnapshotSplitsIfNeed()

关键函数 : IncrementalSourceReader.onSplitFinished()

scss 复制代码
@Override
protected void onSplitFinished(Map finishedSplitIds) {
    for (SourceSplitStateBase splitState : finishedSplitIds.values()) {
        SourceSplitBase sourceSplit = splitState.toSourceSplit();
        checkState(
            sourceSplit.isSnapshotSplit() && sourceSplit.asSnapshotSplit().isSnapshotReadFinished(),
            String.format(&#34;Only snapshot split could finish, but the actual split is incremental split %s&#34;, sourceSplit)
        );
        finishedUnackedSplits.put(sourceSplit.splitId(), sourceSplit.asSnapshotSplit());
    }
    reportFinishedSnapshotSplitsIfNeed();
    context.sendSplitRequest(); // 请求下一个分片
}
6.2 增量分片分配
scss 复制代码
HybridSplitAssigner.getNext() → incrementalSplitAssigner.getNext()

关键函数 : IncrementalSplitAssigner.getNext()

scss 复制代码
@Override
public Optional getNext() {
    if (remainingTables.isEmpty()) {
        return Optional.empty();
    }
    
    // 为每个表创建一个增量分片
    TableId tableId = remainingTables.iterator().next();
    remainingTables.remove(tableId);
    
    // 创建增量分片,从快照的高水位标记开始
    IncrementalSplit split = new IncrementalSplit(
        tableId.toString(),
        Collections.singletonList(tableId),
        completedSnapshotSplitWatermarks.get(tableId).getHighWatermark(),
        stopOffset,
        Collections.emptyList()
    );
    
    return Optional.of(split);
}
6.3 Binlog 事件处理
scss 复制代码
MySqlBinlogFetchTask.execute() → MySqlStreamingChangeEventSource.execute() → handleEvent()

关键函数 : MySqlBinlogFetchTask.MySqlBinlogSplitReadTask.handleEvent()

scss 复制代码
@Override
protected void handleEvent(MySqlPartition partition, MySqlOffsetContext offsetContext, Event event) {
    super.handleEvent(partition, offsetContext, event);
    
    // 检查是否需要停止(有界读取)
    if (isBoundedRead()) {
        final BinlogOffset currentBinlogOffset = getBinlogPosition(offsetContext.getOffset());
        
        // 达到高水位标记,结束 binlog 读取
        if (currentBinlogOffset.isAtOrAfter(binlogSplit.getStopOffset())) {
            // 发送 binlog 结束事件
            dispatcher.dispatchWatermarkEvent(
                partition.getSourcePartition(),
                binlogSplit,
                currentBinlogOffset,
                WatermarkKind.END
            );
            // 通知读取器任务完成
            ((MySqlSnapshotFetchTask.SnapshotBinlogSplitChangeEventSourceContext) context).finished();
        }
    }
}

关键数据转换过程

1. MySQL 数据类型到 SeaTunnel 类型的转换

转换器 : MySqlTypeUtils.convertFromColumn()

csharp 复制代码
public static SeaTunnelDataType convertFromColumn(Column column, RelationalDatabaseConnectorConfig config) {
    String mysqlType = column.typeName().toUpperCase();
    
    switch (mysqlType) {
        case &#34;INT&#34;:
        case &#34;INTEGER&#34;:
            return BasicType.INT_TYPE;
        case &#34;BIGINT&#34;:
            return BasicType.LONG_TYPE;
        case &#34;VARCHAR&#34;:
        case &#34;TEXT&#34;:
            return BasicType.STRING_TYPE;
        case &#34;DATETIME&#34;:
            return LocalTimeType.LOCAL_DATE_TIME_TYPE;
        case &#34;TIMESTAMP&#34;:
            return LocalTimeType.LOCAL_DATE_TIME_TYPE;
        case &#34;DECIMAL&#34;:
        case &#34;NUMERIC&#34;:
            return new DecimalType(column.length(), column.scale());
        default:
            return BasicType.STRING_TYPE;
    }
}

2. SeaTunnel 类型到 ClickHouse 类型的转换

转换器 : JdbcRowConverter.createFieldInjectFunctionMap()

scss 复制代码
private Map createFieldInjectFunctionMap(
        String[] fields, Map clickhouseTableSchema) {
    Map fieldInjectFunctionMap = new HashMap<>();
    
    for (String field : fields) {
        String fieldType = clickhouseTableSchema.get(field);
        ClickhouseFieldInjectFunction injectFunction = Arrays.asList(
            new ArrayInjectFunction(),
            new MapInjectFunction(),
            new BigDecimalInjectFunction(),
            new DateTimeInjectFunction(),
            new LongInjectFunction(),
            new DoubleInjectFunction(),
            new IntInjectFunction(),
            new StringInjectFunction()
        ).stream()
         .filter(f -> f.isCurrentFieldType(unwrapCommonPrefix(fieldType)))
         .findFirst()
         .orElse(new StringInjectFunction());
        
        fieldInjectFunctionMap.put(field, injectFunction);
    }
    return fieldInjectFunctionMap;
}

3. 数据行转换流程

复制代码
MySQL ResultSet → Debezium SourceRecord → SeaTunnelRow → ClickHouse PreparedStatement

完整转换链:

    1. MySQL ResultSet: 从数据库查询结果
    1. Debezium SourceRecord: Debezium 格式的事件记录
    1. SeaTunnelRow: SeaTunnel 统一的数据格式
    1. ClickHouse PreparedStatement: 最终写入 ClickHouse 的语句

精确一次处理实现

1. 水位标记机制

低水位标记 : 快照开始时的 binlog 位置
高水位标记: 快照结束时的 binlog 位置

ini 复制代码
// 低水位标记
final BinlogOffset lowWatermark = currentBinlogOffset(jdbcConnection);
dispatcher.dispatchWatermarkEvent(partition, snapshotSplit, lowWatermark, WatermarkKind.LOW);

// 数据快照
createDataEvents(ctx, snapshotSplit.getTableId());

// 高水位标记
final BinlogOffset highWatermark = currentBinlogOffset(jdbcConnection);
dispatcher.dispatchWatermarkEvent(partition, snapshotSplit, highWatermark, WatermarkKind.HIGH);

2. 增量补偿机制

lowWatermark != highWatermark 时,需要进行增量补偿:

scss 复制代码
// 创建补偿增量分片
IncrementalSplit backfillSplit = new IncrementalSplit(
    splitId,
    Collections.singletonList(tableId),
    lowWatermark,    // 从低水位开始
    highWatermark,   // 到高水位结束
    new ArrayList<>()
);

// 执行补偿读取
MySqlBinlogSplitReadTask backfillTask = new MySqlBinlogSplitReadTask(...);
backfillTask.execute(context, partition, offsetContext);

3. 偏移量原子性

java 复制代码
@Override
public void notifyCheckpointComplete(long checkpointId) throws Exception {
    // 在检查点完成时提交变更日志偏移量
    dataSourceDialect.commitChangeLogOffset(snapshotChangeLogOffset);
}

性能优化点

1. 并行度控制

  • 快照阶段: 多分片并行读取,提高全量数据读取效率
  • 增量阶段: 单线程顺序处理,保证事件顺序性

2. 批量处理

  • 批次大小 : 可配置的 bulk_size 参数(默认 20000)
  • 批量提交: 减少网络往返和事务开销

3. 内存管理

  • 流式处理: 避免大量数据驻留内存
  • 连接池: 复用数据库连接,减少连接创建开销

错误处理与容错

1. 连接异常处理

csharp 复制代码
try {
    statement.executeBatch();
    connection.commit();
} catch (SQLException e) {
    connection.rollback();
    throw new ClickhouseConnectorException(
        CommonErrorCodeDeprecated.FLUSH_DATA_FAILED,
        &#34;Clickhouse execute batch statement error&#34;,
        e
    );
}

2. 数据类型不匹配处理

scss 复制代码
// 使用默认转换器处理未知类型
fieldInjectFunctionMap
    .getOrDefault(fieldName, DEFAULT_INJECT_FUNCTION)
    .injectFields(statement, i + 1, fieldValue);

3. 重试机制

  • 连接重试 : 支持配置 connect.max-retries 参数
  • 自动重连: 数据库连接断开后自动重连

监控与指标

1. CDC 指标

less 复制代码
// 记录获取延迟
recordFetchDelay.set(fetchDelay > 0 ? fetchDelay : 0);

// 记录发送延迟
recordEmitDelay.set(emitDelay > 0 ? emitDelay : 0);

// 延迟事件监控
if (delayedEventLimiter.acquire(messageTimestamp)) {
    eventListener.onEvent(new MessageDelayedEvent(emitDelay, element.toString()));
}

2. ClickHouse 指标

  • 批次大小: 当前批次中的记录数
  • 写入延迟: 数据写入 ClickHouse 的耗时
  • 错误率: 写入失败的比例

总结

整个 MySQL CDC 到 ClickHouse 的数据流转过程是一个精心设计、高度优化的流水线,主要特点包括:

1. 全链路数据一致性

  • • 通过水位标记和补偿机制确保数据不丢失
  • • 支持精确一次处理语义
  • • 自动处理快照期间的变更数据

2. 高性能并行处理

  • • 快照阶段支持多分片并行读取
  • • 批量写入 ClickHouse 减少网络开销
  • • 智能分片路由实现负载均衡

3. 灵活的数据转换

  • • 支持复杂的数据类型映射
  • • 自动处理 DDL 结构变更
  • • 提供丰富的元数据信息

4. 企业级可靠性

  • • 完善的错误处理和重试机制
  • • 支持故障恢复和断点续传
  • • 提供详细的监控指标

5. 优化策略

  • • 流式处理避免内存溢出
  • • 连接池复用减少资源消耗
  • • 智能批次管理平衡性能和延迟

这个架构设计使得 SeaTunnel 能够高效、可靠地将 MySQL 的变更数据实时同步到 ClickHouse,为实时分析提供强有力的数据支撑。

.preview-wrapper pre::before { position: absolute; top: 0; right: 0; color: #ccc; text-align: center; font-size: 0.8em; padding: 5px 10px 0; line-height: 15px; height: 15px; font-weight: 600; } .hljs.code__pre > .mac-sign { display: flex; } .code__pre { padding: 0 !important; } .hljs.code__pre code { display: -webkit-box; padding: 0.5em 1em 1em; overflow-x: auto; text-indent: 0; } h2 strong { color: inherit !important; }

本文使用 文章同步助手 同步

相关推荐
Super_King_2 小时前
Doris 和 Flink 技术相关
大数据·flink
AI营销资讯站3 小时前
2025社群运营AI工具TOP榜:从自动化话术到AI CRM系统的终极演进
大数据·人工智能
小小王app小程序开发3 小时前
任务悬赏小程序核心玩法 + 功能全解析:精准匹配与信任构建的变现逻辑
大数据·小程序
vivo互联网技术3 小时前
vivo Celeborn PB级Shuffle优化处理实践
大数据·rss·celeborn·shuffle
真实的菜3 小时前
TDengine实战:构建高性能物联网时序数据存储方案
大数据·物联网·tdengine
Mxsoft6193 小时前
我发现OPC UA证书失效致连接中断,手动更新救场!
大数据
zhixingheyi_tian3 小时前
HDFS 之 Client 调试
大数据·hadoop·hdfs
Dreamshop_AI3 小时前
电商视觉时代:如何用Dreamshop重构“人-货-场”?
大数据·人工智能·经验分享·ai作画·aigc