【Python好用到哭的库】pandas-数据分析神器

库简介

pandas是Python中最流行的数据分析库,提供了DataFrame这一强大的数据结构,可以轻松处理结构化数据。

安装方法

bash 复制代码
pip install pandas

入门示例

python 复制代码
import pandas as pd

# 创建简单的DataFrame
data = {'姓名': ['张三', '李四', '王五'],
        '年龄': [25, 30, 35],
        '城市': ['北京', '上海', '广州']}
df = pd.DataFrame(data)
print(df)

# 基本数据操作
print(df['年龄'].mean())  # 计算平均年龄
print(df[df['年龄'] > 28])  # 筛选年龄大于28的记录

进阶实战

python 复制代码
# 读取CSV文件并进行数据分析
import pandas as pd

# 读取数据
df = pd.read_csv('sales_data.csv')

# 数据清洗
df = df.dropna()  # 删除缺失值
df['销售额'] = df['单价'] * df['数量']

# 分组统计
sales_by_city = df.groupby('城市')['销售额'].sum()
print(sales_by_city)

# 时间序列分析
df['日期'] = pd.to_datetime(df['日期'])
df.set_index('日期', inplace=True)
monthly_sales = df['销售额'].resample('M').sum()

最佳实践

  • 使用.copy()方法避免SettingWithCopyWarning
  • 对于大型数据集,使用适当的数据类型减少内存占用
  • 利用向量化操作代替循环提高性能

应用场景

  • 数据清洗和预处理
  • 数据分析和统计
  • 时间序列分析
  • 数据可视化准备

常见问题

  1. 如何处理缺失值?

    • 使用df.dropna()删除缺失值
    • 使用df.fillna(value)填充缺失值
  2. 如何合并多个DataFrame?

    • 使用pd.concat([df1, df2])进行合并
    • 使用pd.merge(df1, df2, on='key')进行连接
  3. 如何提高pandas性能?

    • 使用向量化操作代替循环
    • 使用适当的数据类型
    • 使用分块处理大型数据集

学习资源

相关推荐
幻云201015 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
仰望星空@脚踏实地16 小时前
本地Python脚本是否存在命令注入风险
python·datakit·命令注入
橙子家16 小时前
WebAPI 项目通过 CI/CD 自动化部署到 Linux 服务器(docker-compose)
后端
LOnghas121117 小时前
果园环境中道路与树木结构检测的YOLO11-Faster语义分割方法
python
钟离墨笺18 小时前
Go语言--2go基础-->基本数据类型
开发语言·前端·后端·golang
2501_9445264218 小时前
Flutter for OpenHarmony 万能游戏库App实战 - 蜘蛛纸牌游戏实现
android·java·python·flutter·游戏
飞Link19 小时前
【Django】Django的静态文件相关配置与操作
后端·python·django
Ulyanov19 小时前
从桌面到云端:构建Web三维战场指挥系统
开发语言·前端·python·tkinter·pyvista·gui开发
钟离墨笺20 小时前
Go语言--2go基础-->map
开发语言·后端·golang
Tony Bai20 小时前
Go 语言的“魔法”时刻:如何用 -toolexec 实现零侵入式自动插桩?
开发语言·后端·golang