【Python好用到哭的库】pandas-数据分析神器

库简介

pandas是Python中最流行的数据分析库,提供了DataFrame这一强大的数据结构,可以轻松处理结构化数据。

安装方法

bash 复制代码
pip install pandas

入门示例

python 复制代码
import pandas as pd

# 创建简单的DataFrame
data = {'姓名': ['张三', '李四', '王五'],
        '年龄': [25, 30, 35],
        '城市': ['北京', '上海', '广州']}
df = pd.DataFrame(data)
print(df)

# 基本数据操作
print(df['年龄'].mean())  # 计算平均年龄
print(df[df['年龄'] > 28])  # 筛选年龄大于28的记录

进阶实战

python 复制代码
# 读取CSV文件并进行数据分析
import pandas as pd

# 读取数据
df = pd.read_csv('sales_data.csv')

# 数据清洗
df = df.dropna()  # 删除缺失值
df['销售额'] = df['单价'] * df['数量']

# 分组统计
sales_by_city = df.groupby('城市')['销售额'].sum()
print(sales_by_city)

# 时间序列分析
df['日期'] = pd.to_datetime(df['日期'])
df.set_index('日期', inplace=True)
monthly_sales = df['销售额'].resample('M').sum()

最佳实践

  • 使用.copy()方法避免SettingWithCopyWarning
  • 对于大型数据集,使用适当的数据类型减少内存占用
  • 利用向量化操作代替循环提高性能

应用场景

  • 数据清洗和预处理
  • 数据分析和统计
  • 时间序列分析
  • 数据可视化准备

常见问题

  1. 如何处理缺失值?

    • 使用df.dropna()删除缺失值
    • 使用df.fillna(value)填充缺失值
  2. 如何合并多个DataFrame?

    • 使用pd.concat([df1, df2])进行合并
    • 使用pd.merge(df1, df2, on='key')进行连接
  3. 如何提高pandas性能?

    • 使用向量化操作代替循环
    • 使用适当的数据类型
    • 使用分块处理大型数据集

学习资源

相关推荐
Justin3go6 小时前
HUNT0 上线了——尽早发布,尽早发现
前端·后端·程序员
Tony Bai7 小时前
高并发后端:坚守 Go,还是拥抱 Rust?
开发语言·后端·golang·rust
一线大码7 小时前
SpringBoot 3 和 4 的版本新特性和升级要点
java·spring boot·后端
秃了也弱了。8 小时前
python实现定时任务:schedule库、APScheduler库
开发语言·python
Dfreedom.8 小时前
从 model(x) 到__call__:解密深度学习框架的设计基石
人工智能·pytorch·python·深度学习·call
weixin_425023008 小时前
Spring Boot 配置文件优先级详解
spring boot·后端·python
weixin_425023008 小时前
Spring Boot 实用核心技巧汇总:日期格式化、线程管控、MCP服务、AOP进阶等
java·spring boot·后端
一线大码8 小时前
Java 8-25 各个版本新特性总结
java·后端
VX:Fegn08959 小时前
计算机毕业设计|基于springboot + vue校园社团管理系统(源码+数据库+文档)
前端·数据库·vue.js·spring boot·后端·课程设计
To Be Clean Coder9 小时前
【Spring源码】通过 Bean 工厂获取 Bean 的过程
java·后端·spring