机器学习——交叉熵损失函数

调用示例

python 复制代码
loss_fun = F.cross_entropy()

loss = loss_fun(y_pred, labels)

一句话描述

交叉熵损失函数是描述:预测的概率分布真实概率分布之间差异的损失函数。差异越大,损失值越高;差异越小,损失值越低。

举例说明

假设有一只猫的图片,我们采用一个三分类(猫,狗,鸟)的模型进行预测

真实标签(one-hot 编码):[1, 0, 0]

表示 100% 是猫。

模型预测概率(经过 softmax 后):

0.7, 0.2, 0.1

模型认为 70% 可能是猫,20% 狗,10% 鸟。

公式

对于二分类任务

对于多分类任务

带入例子

真实标签:y=[1,0,0]

预测概率:p=[0.7,0.2,0.1]

则有:

总结

假设预测概率特别低(比如 0.01),那么根据log函数的特性,可以知道,越接近0其损失值会越大。越接近1损失越小。

相关推荐
乐迪信息8 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人10 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经10 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_201913 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba13 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学13 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子13 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望13 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端13 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白13 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗