deepseek V3.2大模型的底层原理和用的新技术

DeepSeek-V3.2最核心的创新是引入了两项技术,它们的目标可以概括为一句话:让大模型在"想大事、干长活"时,既聪明又便宜。下面我用一个比喻和一张图来解释它的主要原理。

你可以把大模型想象成一个极其用功的"学霸",但它之前有两个困扰:

核心困扰 之前的"笨办法" DeepSeek-V3.2的"巧办法" 带来的好处
1. 读长文太累 (处理长上下文效率低) 读新内容时,必须回过头去重新翻阅之前每一页来做关联。 给大脑装了个智能目录(DSA稀疏注意力)。读新内容时,先看"目录"定位关键几页,只精读这几页。 速度更快、成本更低 。官方称处理长文本时,推理速度提升3.5倍 ,内存占用减少70%
2. 用工具就忘事 (执行多步骤任务时状态漂移) 比如规划旅行时,一查地图,就忘了之前为什么要查,得重新思考"我们在规划老人出行"。 增加了推理过程记忆(思考融入工具调用) 。只要任务没变,其核心的思考过程和工具调用结果会一直保留,不会被忘记。 能完成更复杂、多步骤的任务(如上网搜索、写代码、分析数据),更像一个靠谱的"智能助理"(Agent)。

这个"智能目录"技术,官方名称叫 DeepSeek稀疏注意力(DSA),是实现效率提升的关键。它借鉴了相关学术研究的思路,并通过工程实践,在几乎不影响模型输出的前提下,实现了长文本训练和推理效率的大幅提升。

除此之外,还有两个重要的技术支撑

为了在复杂任务中表现出色,DeepSeek-V3.2在训练上还有两大支撑:

  • 更充分的"考前特训" :过去一些开源模型在基础学习(预训练)后,缺少针对复杂任务(如数学、编程)的专项强化训练。V3.2在强化学习上的投入提升至总训练成本的10% 以上,并采用"专家蒸馏"策略,先培养各领域的"特长生",再用它们的数据来训练最终模型。

  • 与国产硬件深度协同:为了在当前的硬件条件下最大化性能,V3.2从设计之初就考虑了与国产AI芯片(如寒武纪、昇腾)的适配,通过软硬件协同优化来提升效率。

它的实际表现如何?

综合来看,这两个版本分别面向不同的需求:

  • DeepSeek-V3.2 (通用版) :在日常通用任务上表现均衡,性能被认为可与GPT-5等顶尖模型媲美。

  • DeepSeek-V3.2 Speciale (强化版) :专门针对数学推理、代码、学术研究等需要深度思考的复杂任务进行优化。评测显示,它在一些国际数学竞赛题上的表现甚至超过了部分顶级闭源模型。

总而言之,DeepSeek-V3.2通过"智能索引 "解决了长文本处理的效率瓶颈,通过"连续思考"解决了执行复杂任务的可靠性问题,并通过强化训练和软硬协同补齐了能力短板。

如果你对它的实际应用,比如如何编写一个能利用其"连续思考"能力处理复杂任务的提示词感兴趣,我可以为你进一步介绍。

相关推荐
小鸡吃米…13 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫13 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)14 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan14 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维14 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS14 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd14 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟15 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然15 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~15 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1