【鸿蒙开发案例篇】基于MindSpore Lite的端侧人物图像分割案例

大家好,我是 V 哥。今天的内容咱们来详细介绍鸿蒙开发中,如何使用MindSpore Lite在鸿蒙系统上实现端侧人物图像分割功能,以及提供完整的实现方案。

联系V哥获取 鸿蒙学习资料

系统架构设计

技术栈与组件关系
UI界面 图像选择 结果展示 图像处理 MindSpore Lite推理 图像合成 模型文件 背景图库

核心功能流程

  1. 用户选择人物图片
  2. 加载MindSpore Lite模型
  3. 执行图像分割推理
  4. 将分割结果与背景图合成
  5. 展示最终效果

具体实现步骤

1. 工程配置与依赖

syscap.json配置

json 复制代码
{
  "devices": {
    "general": ["phone"]
  },
  "development": {
    "addedSysCaps": ["SystemCapability.Ai.MindSpore"]
  }
}

模型准备

  • rmbg_fp16.ms模型文件放置在entry/src/main/resources/rawfile目录
  • 模型输入:256×256 RGB图像
  • 模型输出:256×256单通道掩码

2. 核心工具类实现

Predict.ets(模型推理核心)

typescript 复制代码
// utils/Predict.ets
import mindSporeLite from '@ohos.ai.mindSporeLite';
import { logger } from './Logger';
import common from '@ohos.app.ability.common';

export class Predict {
  private context: common.UIAbilityContext;
  private model: mindSporeLite.Model | null = null;
  
  constructor(context: common.UIAbilityContext) {
    this.context = context;
  }

  // 加载模型
  async loadModel(modelPath: string): Promise<boolean> {
    try {
      // 创建模型实例
      this.model = await mindSporeLite.createModel(this.context, modelPath);
      logger.info('Model loaded successfully');
      return true;
    } catch (err) {
      logger.error(`Failed to load model: ${err.message}`);
      return false;
    }
  }

  // 执行推理
  async predict(imageData: ArrayBuffer): Promise<ArrayBuffer | null> {
    if (!this.model) {
      logger.error('Model not loaded');
      return null;
    }

    try {
      // 准备输入Tensor
      const inputTensor = this.model.getInputs();
      const inputData = new Uint8Array(imageData);
      inputTensor.setData(inputData);

      // 执行推理
      const startTime = new Date().getTime();
      const outputTensor = this.model.predict([inputTensor]);
      const endTime = new Date().getTime();
      logger.info(`Inference time: ${endTime - startTime}ms`);

      // 获取输出数据
      return outputTensor.getData();
    } catch (err) {
      logger.error(`Prediction failed: ${err.message}`);
      return null;
    }
  }

  // 释放模型资源
  releaseModel() {
    if (this.model) {
      this.model.release();
      this.model = null;
      logger.info('Model released');
    }
  }
}

图像处理工具类

typescript 复制代码
// utils/ImageProcessor.ets
import image from '@ohos.multimedia.image';
import { logger } from './Logger';

export class ImageProcessor {
  
  // 调整图像大小
  static async resizeImage(pixelMap: image.PixelMap, width: number, height: number): Promise<image.PixelMap> {
    const options: image.InitializationOptions = {
      size: { width, height },
      editable: true
    };
    return pixelMap.createPixelMap(options);
  }

  // 将PixelMap转换为模型输入格式
  static async pixelMapToInputData(pixelMap: image.PixelMap): Promise<ArrayBuffer> {
    const imageInfo = await pixelMap.getImageInfo();
    const buffer = await pixelMap.getImageBuffer();
    
    // 转换为RGB格式
    const rgbData = new Uint8Array(imageInfo.size.width * imageInfo.size.height * 3);
    let offset = 0;
    
    for (let y = 0; y < imageInfo.size.height; y++) {
      for (let x = 0; x < imageInfo.size.width; x++) {
        const color = buffer[offset];
        rgbData[offset * 3] = (color >> 16) & 0xFF;  // R
        rgbData[offset * 3 + 1] = (color >> 8) & 0xFF;  // G
        rgbData[offset * 3 + 2] = color & 0xFF;  // B
        offset++;
      }
    }
    
    return rgbData.buffer;
  }

  // 生成合成图像
  static async compositeImages(
    foreground: image.PixelMap, 
    background: image.PixelMap, 
    mask: ArrayBuffer
  ): Promise<image.PixelMap> {
    const fgInfo = await foreground.getImageInfo();
    const bgInfo = await background.getImageInfo();
    
    // 确保背景与前景尺寸一致
    const resizedBg = await this.resizeImage(background, fgInfo.size.width, fgInfo.size.height);
    const bgBuffer = await resizedBg.getImageBuffer();
    
    // 创建结果图像
    const result = await image.createPixelMap(bgBuffer);
    const resultBuffer = await result.getImageBuffer();
    
    // 应用掩码合成
    const maskArray = new Uint8Array(mask);
    for (let i = 0; i < resultBuffer.length; i++) {
      const alpha = maskArray[i] / 255; // 归一化
      
      if (alpha > 0.5) { // 使用阈值处理
        resultBuffer[i] = bgBuffer[i];
      } else {
        const fgColor = await foreground.getPixel(i);
        resultBuffer[i] = fgColor;
      }
    }
    
    await result.putImageBuffer(resultBuffer);
    return result;
  }
}

3. 界面实现

Index.ets(主界面)

typescript 复制代码
// pages/Index.ets
import photoAccessHelper from '@ohos.file.photoAccessHelper';
import { NavigationParam } from '../model/NavigationParam';
import { logger } from '../utils/Logger';

@Entry
@Component
struct Index {
  private context = getContext(this) as common.UIAbilityContext;
  
  build() {
    Column() {
      Button('选择人物图片')
        .width(200)
        .height(60)
        .fontSize(20)
        .margin(20)
        .onClick(() => this.openPhotoPicker())
    }
    .width('100%')
    .height('100%')
    .justifyContent(FlexAlign.Center)
  }

  // 打开相册选择器
  private async openPhotoPicker() {
    try {
      const phAccessHelper = photoAccessHelper.getPhotoAccessHelper(this.context);
      const result = await phAccessHelper.select({
        selectionArgs: {
          selection: photoAccessHelper.PhotoKeys.PICK,
          maxSelectCount: 1,
          MIMEType: photoAccessHelper.PhotoViewMIMETypes.IMAGE_TYPE,
        }
      });
      
      if (result && result.length > 0) {
        const asset = result;
        const uri = await asset.getUri();
        logger.info(`Selected image: ${uri}`);
        
        // 导航到图像生成页面
        const param: NavigationParam = { imageUri: uri.toString() };
        router.pushUrl({
          url: 'pages/ImageGenerate',
          params: param
        });
      }
    } catch (err) {
      logger.error(`Photo picker failed: ${err.message}`);
    }
  }
}

ImageGenerate.ets(图像生成页面)

typescript 复制代码
// pages/ImageGenerate.ets
import { Predict } from '../utils/Predict';
import { ImageProcessor } from '../utils/ImageProcessor';
import { ImageDataListConstant } from '../common/constants/ImageDataListConstant';
import { logger } from '../utils/Logger';
import fs from '@ohos.file.fs';
import image from '@ohos.multimedia.image';

@Entry
@Component
struct ImageGenerate {
  @State originImage: image.PixelMap | null = null;
  @State resultImage: image.PixelMap | null = null;
  @State selectedBgIndex: number = 0;
  @State isLoading: boolean = false;
  
  private context = getContext(this) as common.UIAbilityContext;
  private predict: Predict = new Predict(this.context);
  private imageUri: string = '';
  
  aboutToAppear() {
    const params = router.getParams() as NavigationParam;
    if (params?.imageUri) {
      this.imageUri = params.imageUri;
      this.loadOriginImage();
    }
  }
  
  // 加载原始图像
  private async loadOriginImage() {
    try {
      const file = await fs.open(this.imageUri, fs.OpenMode.READ_ONLY);
      const imageSource = image.createImageSource(file.fd);
      this.originImage = await imageSource.createPixelMap();
      await fs.close(file);
    } catch (err) {
      logger.error(`Failed to load image: ${err.message}`);
    }
  }
  
  // 执行图像分割
  private async performSegmentation() {
    if (!this.originImage) return;
    
    this.isLoading = true;
    
    try {
      // 1. 加载模型
      const modelLoaded = await this.predict.loadModel('rmbg_fp16.ms');
      if (!modelLoaded) return;
      
      // 2. 预处理图像
      const resizedImage = await ImageProcessor.resizeImage(this.originImage, 256, 256);
      const inputData = await ImageProcessor.pixelMapToInputData(resizedImage);
      
      // 3. 执行推理
      const maskData = await this.predict.predict(inputData);
      if (!maskData) return;
      
      // 4. 获取背景图像
      const bgResource = ImageDataListConstant.BACKGROUND_LIST[this.selectedBgIndex];
      const bgPixelMap = await bgResource.createPixelMap();
      
      // 5. 合成图像
      this.resultImage = await ImageProcessor.compositeImages(
        this.originImage,
        bgPixelMap,
        maskData
      );
    } catch (err) {
      logger.error(`Segmentation failed: ${err.message}`);
    } finally {
      this.isLoading = false;
      this.predict.releaseModel();
    }
  }
  
  // 切换背景
  private changeBackground(index: number) {
    this.selectedBgIndex = index;
    this.performSegmentation();
  }
  
  build() {
    Column() {
      // Tab切换
      Tabs({ barPosition: BarPosition.Start }) {
        TabContent() {
          // 原图标签页
          Column() {
            if (this.originImage) {
              Image(this.originImage)
                .width('100%')
                .height('80%')
                .objectFit(ImageFit.Contain)
            } else {
              Progress()
            }
          }
        }
        .tabBar('原图')
        
        TabContent() {
          // 合成标签页
          Column() {
            if (this.isLoading) {
              Progress()
              Text('处理中...')
            } else if (this.resultImage) {
              Image(this.resultImage)
                .width('100%')
                .height('70%')
                .objectFit(ImageFit.Contain)
              
              // 背景选择器
              Scroll() {
                Row({ space: 15 }) {
                  ForEach(ImageDataListConstant.BACKGROUND_LIST, (bg, index) => {
                    Image(bg)
                      .width(80)
                      .height(80)
                      .border({ width: this.selectedBgIndex === index ? 3 : 0, color: Color.Blue })
                      .onClick(() => this.changeBackground(index))
                  })
                }
                .padding(10)
              }
              .height(100)
            } else {
              Button('开始合成')
                .onClick(() => this.performSegmentation())
            }
          }
        }
        .tabBar('合成')
      }
    }
  }
  
  aboutToDisappear() {
    this.predict.releaseModel();
  }
}

4. 辅助工具类

Logger.ets(日志工具)

typescript 复制代码
// utils/Logger.ets
const TAG = 'ImageSegmentation';

export const logger = {
  info: (msg: string) => console.info(`${TAG}: ${msg}`),
  error: (msg: string) => console.error(`${TAG}: ${msg}`),
  warn: (msg: string) => console.warn(`${TAG}: ${msg}`)
};

ImageDataListConstant.ets(常量)

typescript 复制代码
// common/constants/ImageDataListConstant.ets
export class ImageDataListConstant {
  static readonly BACKGROUND_LIST: Resource[] = [
    $r('app.media.bg1'),
    $r('app.media.bg2'),
    $r('app.media.bg3'),
    $r('app.media.bg4'),
    $r('app.media.bg5'),
  ];
}
typescript 复制代码
// model/NavigationParam.ets
export class NavigationParam {
  imageUri: string = '';
}

性能优化策略

  1. 模型优化

    • 使用FP16模型减少内存占用
    • 量化模型到INT8提升推理速度
    • 使用模型压缩技术减少模型体积
  2. 推理加速

    typescript 复制代码
    // 在Predict类中添加NPU支持
    async loadModel(modelPath: string): Promise<boolean> {
      try {
        const context: mindSporeLite.Context = {
          target: ['npu'], // 优先使用NPU
          cpu: {
            precision: 'float16' // 使用FP16加速
          }
        };
        this.model = await mindSporeLite.createModel(this.context, modelPath, context);
        return true;
      } catch (err) {
        logger.error(`NPU not available, falling back to CPU`);
        // 回退到CPU实现...
      }
    }
  3. 内存管理

    • 及时释放模型资源
    • 使用图像池复用PixelMap对象
    • 限制同时处理的图像数量
  4. 异步处理

    typescript 复制代码
    // 使用Promise.all并行处理
    async processMultipleImages(images: image.PixelMap[]) {
      const promises = images.map(img => 
        this.predict.performSegmentation(img)
      );
      const results = await Promise.all(promises);
      // 处理结果...
    }

完整时序流程

User 用户界面 MindSpore模型 图像处理器 选择人物图片 加载原始图像 加载模型 模型加载成功 预处理图像(缩放/格式转换) 返回处理后的图像数据 执行推理 返回分割掩码 合成图像(应用掩码+背景) 返回合成结果 显示合成图像 切换背景 使用新背景重新合成 返回新结果 更新显示 User 用户界面 MindSpore模型 图像处理器

部署与测试注意事项

  1. 设备要求

    • 华为手机(支持NPU加速)
    • HarmonyOS 5.1.0 Release及以上
    • 内存:至少2GB空闲内存
  2. 测试用例

    typescript 复制代码
    // 在Predict类中添加测试方法
    async testModelPerformance() {
      const testImage = await createTestImage(256, 256); // 创建测试图像
      const startTime = new Date().getTime();
      
      for (let i = 0; i < 10; i++) {
        await this.predict(await ImageProcessor.pixelMapToInputData(testImage));
      }
      
      const endTime = new Date().getTime();
      logger.info(`Average inference time: ${(endTime - startTime)/10}ms`);
    }
  3. 常见问题解决

    • 模型加载失败:检查模型路径和权限
    • 推理结果异常:验证输入图像格式和尺寸
    • 内存不足:优化图像处理流程,减少中间数据
    • NPU不可用:添加fallback到CPU的实现

扩展功能建议

  1. 视频实时分割

    • 使用@ohos.multimedia.media捕获摄像头数据
    • 实现帧级分割处理
    • 添加背景虚化等特效
  2. 模型热更新

    typescript 复制代码
    // 动态更新模型
    async updateModel(newModelPath: string) {
      this.predict.releaseModel();
      return this.predict.loadModel(newModelPath);
    }
  3. 分割结果编辑

    • 添加手动修正分割区域的工具
    • 实现边缘羽化处理
    • 添加滤镜和效果调整
  4. 云边协同

    • 在设备性能不足时切换到云端模型
    • 实现模型结果融合
    • 添加隐私保护机制

这个实现方案完整展示了如何在鸿蒙系统上使用MindSpore Lite实现端侧人物图像分割功能。通过优化模型加载、推理和图像合成流程,可以在移动设备上实现实时的人物背景替换效果。兄弟们可以玩起来。

相关推荐
L、2183 小时前
Flutter + OpenHarmony + 区块链:构建去中心化身份认证系统(DID 实战)
flutter·华为·去中心化·区块链·harmonyos
遇到困难睡大觉哈哈4 小时前
Harmony os —— Data Augmentation Kit 知识问答实战全流程(流式 RAG 问答踩坑记录)
harmonyos·鸿蒙
L、2184 小时前
Flutter + OpenHarmony 全栈实战:打造“鸿蒙智联”智能家居控制中心(系列终章)
flutter·华为·智能手机·electron·智能家居·harmonyos
song5015 小时前
鸿蒙 Flutter 日志系统:分级日志与鸿蒙 Hilog 集成
图像处理·人工智能·分布式·flutter·华为
song5015 小时前
鸿蒙 Flutter 插件测试:多版本兼容性自动化测试
人工智能·分布式·flutter·华为·开源鸿蒙
m0_685535086 小时前
光学工程师面试题汇总
华为·光学·光学设计·光学工程·镜头设计
马剑威(威哥爱编程)6 小时前
【鸿蒙开发案例篇】火力全开:鸿蒙6.0游戏开发战术手册
华为·harmonyos
L、2187 小时前
Flutter + OpenHarmony 分布式能力融合:实现跨设备 UI 共享与协同控制(终极篇)
javascript·分布式·flutter·ui·智能手机·harmonyos
鸿蒙开发工程师—阿辉7 小时前
HarmonyOS 5 极致动效实验室: Canvas 高阶动画的实现
华为·harmonyos