一、核心概念框架
1.1 多目标强化学习(MORL)定义
MORL=<S,A,P,R⃗,γ> MORL = <S, A, P, R⃗, γ> MORL=<S,A,P,R⃗,γ>
其中R⃗=[r1,r2,...,rm]是m维奖励向量 其中 R⃗ = [r₁, r₂, ..., rₘ] 是m维奖励向量 其中R⃗=[r1,r2,...,rm]是m维奖励向量
目标:找到帕累托最优策略集 目标:找到帕累托最优策略集 目标:找到帕累托最优策略集
二、主要技术路线
2.1 标量化方法(主流方法)
python
# 线性标量化示例
class LinearScalarization:
def __init__(self, weights):
self.weights = weights # 权重向量
def scalarize(self, reward_vector):
return np.dot(self.weights, reward_vector)
# 在DRL算法中的应用
class MO_DQN:
def __init__(self, scalarization_fn):
self.scalarization = scalarization_fn
def compute_scalar_reward(self, vector_reward):
return self.scalarization.scalarize(vector_reward)
2.2 基于偏好的方法
python
# 条件网络架构
class PreferenceConditionedNetwork(nn.Module):
def __init__(self, state_dim, action_dim, pref_dim):
super().__init__()
# 将偏好向量与状态拼接
self.net = nn.Sequential(
nn.Linear(state_dim + pref_dim, 256),
nn.ReLU(),
nn.Linear(256, action_dim)
)
def forward(self, state, preference):
x = torch.cat([state, preference], dim=-1)
return self.net(x)
2.3 帕累托前沿方法
python
class ParetoDQN:
def __init__(self, num_objectives):
self.num_objectives = num_objectives
# 多个Q网络,每个对应一个目标
self.q_nets = [QNetwork() for _ in range(num_objectives)]
def compute_pareto_front(self, q_values_list):
"""计算帕累托最优动作集"""
# 实现非支配排序
pass
三、完整实现方案
3.1 MORL算法架构
python
import torch
import numpy as np
from typing import List, Tuple
class MultiObjectivePPO:
"""
多目标PPO算法实现
"""
def __init__(
self,
state_dim: int,
action_dim: int,
num_objectives: int,
scalarization_method: str = "linear"
):
self.num_objectives = num_objectives
# Actor-Critic网络(多输出)
self.actor = MultiOutputActor(state_dim, action_dim)
self.critic = MultiOutputCritic(state_dim, num_objectives)
# 标量化策略
self.scalarization = self._init_scalarization(scalarization_method)
# 经验回放缓冲区
self.buffer = MultiObjectiveBuffer()
def _init_scalarization(self, method: str):
if method == "linear":
return LinearScalarization()
elif method == "chebyshev":
return ChebyshevScalarization()
elif method == "hypervolume":
return HypervolumeBasedScalarization()
else:
raise ValueError(f"Unknown scalarization method: {method}")
def compute_scalarized_advantages(self, vector_values):
"""计算标量化优势函数"""
scalar_values = self.scalarization(vector_values)
advantages = scalar_values - scalar_values.mean()
return advantages
def update(self, batch):
# 多目标策略梯度更新
vector_values = self.critic(batch.states)
advantages = self.compute_scalarized_advantages(vector_values)
# PPO损失计算(多目标扩展)
loss = self.compute_multi_objective_loss(
batch, advantages, vector_values
)
# 优化步骤
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
3.2 帕累托优化层
python
class ParetoOptimizationLayer(nn.Module):
"""帕累托优化层,用于决策时选择非支配解"""
def __init__(self, epsilon=0.1):
super().__init__()
self.epsilon = epsilon # 帕累托容忍度
def forward(self, q_values: torch.Tensor) -> torch.Tensor:
"""
输入: [batch_size, num_actions, num_objectives]
输出: [batch_size, num_actions] 帕累托最优动作掩码
"""
batch_size, num_actions, num_obj = q_values.shape
pareto_mask = torch.ones(batch_size, num_actions, dtype=torch.bool)
for i in range(batch_size):
for j in range(num_actions):
for k in range(num_actions):
if j != k:
# 检查支配关系
if self.dominates(q_values[i, k], q_values[i, j]):
pareto_mask[i, j] = False
break
return pareto_mask
def dominates(self, a: torch.Tensor, b: torch.Tensor) -> bool:
"""判断a是否支配b"""
# a支配b当且仅当在所有目标上都不差于b,且至少一个目标严格更好
better_or_equal = (a >= b).all()
strictly_better = (a > b).any()
return better_or_equal and strictly_better
四、实用算法实现
4.1 多目标DDPG
python
class MODDPG:
def __init__(self, num_objectives, preference_sampling='adaptive'):
# 多Critic网络
self.critics = [Critic() for _ in range(num_objectives)]
self.actor = Actor()
# 偏好采样策略
self.preference_sampler = PreferenceSampler(
method=preference_sampling,
num_objectives=num_objectives
)
def train_step(self, batch):
# 采样偏好权重
weights = self.preference_sampler.sample()
# 计算标量化Q值
q_values = []
for i, critic in enumerate(self.critics):
q_values.append(critic(batch.states, batch.actions))
scalar_q = self.scalarize_q_values(q_values, weights)
# 更新Actor(最大化标量化Q值)
new_actions = self.actor(batch.states)
actor_loss = -self.scalarize_q_values(
[critic(batch.states, new_actions) for critic in self.critics],
weights
).mean()
# 更新Critics
for i, critic in enumerate(self.critics):
target_q = batch.rewards[:, i] + self.gamma * self.target_critics[i](
batch.next_states,
self.target_actor(batch.next_states)
)
critic_loss = F.mse_loss(q_values[i], target_q.detach())
critic_optimizers[i].zero_grad()
critic_loss.backward()
critic_optimizers[i].step()
4.2 基于进化策略的多目标优化
python
class MOES:
"""多目标进化策略"""
def __init__(self, policy, num_objectives):
self.policy = policy
self.num_objectives = num_objectives
self.population = []
def evolve(self, env, generations=100):
for gen in range(generations):
# 评估种群
fitnesses = self.evaluate_population(env)
# 非支配排序
fronts = self.non_dominated_sort(fitnesses)
# 拥挤度计算
crowding_distances = self.calculate_crowding_distance(fronts)
# 选择下一代
new_population = self.selection(fronts, crowding_distances)
# 变异和交叉
self.population = self.variation(new_population)
五、评估指标系统
python
class MORLEvaluator:
@staticmethod
def compute_hypervolume(pareto_front, reference_point):
"""计算超体积指标"""
pass
@staticmethod
def compute_sparsity(pareto_front):
"""计算帕累托前沿的稀疏性"""
pass
@staticmethod
def compute_coverage(set1, set2):
"""计算两个解集之间的覆盖率"""
pass
六、应用实例:多目标机器人控制
python
class MultiObjectiveRobotEnv:
def __init__(self):
self.objectives = ['energy_efficiency', 'task_completion', 'safety']
def step(self, action):
# 计算多目标奖励
rewards = {
'energy': -self.compute_energy_cost(action),
'task': self.compute_task_progress(),
'safety': self.compute_safety_score()
}
# 转换为向量
reward_vector = np.array([rewards[obj] for obj in self.objectives])
return next_state, reward_vector, done, info
# 训练流程
def train_morl_robot():
env = MultiObjectiveRobotEnv()
agent = MultiObjectivePPO(
state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0],
num_objectives=3,
scalarization_method='chebyshev'
)
# 多偏好训练
preferences = [
[0.8, 0.1, 0.1], # 侧重能效
[0.1, 0.8, 0.1], # 侧重任务完成
[0.1, 0.1, 0.8], # 侧重安全
]
for pref in preferences:
agent.set_preference(pref)
# 训练阶段
for episode in range(num_episodes):
state = env.reset()
while not done:
action = agent.select_action(state)
next_state, reward_vec, done, _ = env.step(action)
agent.store_transition(state, action, reward_vec, next_state, done)
agent.update()
七、关键挑战与解决方案
-
目标冲突处理
- 使用动态权重调整
- 引入约束优化
-
探索-利用权衡
- 多目标探索策略
- 基于不确定性的探索
-
计算效率
- 并行化多目标评估
- 近似帕累托前沿
-
偏好获取
- 交互式偏好学习
- 从演示中学习偏好