基于yolov11s模型训练与推理测试(VScode开发环境)

1、VScode添加python解释器(可以通过快捷键Ctrl+Shift+P),或者如下流程(本流程python解释器使用pycharm建立的空白虚拟环境(python3.8.20 yolov11),空白虚拟环境仅包含python环境,不包括pytorch、torchvision等环境):
图1 选择新的python3.8.20解释器

2、配置完成,新建一个控制终端查看python解释器环境,如下所示:
图2 查看虚拟环境列表

3、进入pytorch/yolo11目录,运行如下命令,新建文件目录并在线下载yolov11的源码(注意:保持PC的网络连接),如下图所示:

mkdir 0_yolo11

git clone -b main https://github.com/ultralytics/ultralytics.git 0_yolo11
图3 下载yolov11的最新代码

4、运行如下指令,在线安装yolov11依赖的工具与软件(pytorch和torchvision也在该依赖中)。如下图所示:

pip install ultralytics
图4 安装yolov11的依赖工具与软件

5、在0_yolo11目录下新建train_test.py的训练脚本文件,并在命令行运行该脚本文件,进行coco数据集的训练。(注意:由于官方权重模型 yolo11s.pt 本身基于 coco 数据集,因此本次训练速度很快)如下图所示:
图5 编写训练脚本并运行该脚本

6、运行完成后,在0_yolo11的runs\detect\train\weights子目录下生成best.pt的模型文件,如下图所示:
图6 生成训练好的模型best.pt

7、在0_yolo11/ultralytics/data目录下,新建images文件夹,并拷贝测试图到该目录。
图7 拷贝测试图到测试目录

8、在0_yolo11目录下新建detect_test.py的推理脚本文件,并在命令行运行该推理脚本文件,如下图所示:
图8 detect_test.py推理脚本文件 图9 运行推理脚本文件

9、在0_yolo11的runs\detect\predict子目录下生成bus.jpg的推理结果,如下图所示:
图10 推理结果

相关推荐
童话名剑3 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美4 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了4 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu5 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_5 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐5 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai6 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120156 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。6 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI6 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染