三角函数公式全归纳

文章目录


本文由Jzwalliser原创,发布在CSDN平台上,遵循CC 4.0 BY-SA协议。

因此,若需转载/引用本文,请注明作者并附原文链接,且禁止删除/修改本段文字。

违者必究,谢谢配合。

个人主页:blog.csdn.net/jzwalliser

前言

笔者高中牲,之前学习三角函数有关知识时,总容易忘这忘那,所以特意整理了一下,方便复习,这里也分享给大家。

诱导公式

"奇变偶不变,符号看象限"

公式一 公式二 公式三
sin ⁡ ( α + 2 k π ) = sin ⁡ α \sin(\alpha+2k\pi)=\sin \alpha sin(α+2kπ)=sinα ( k ∈ Z ) (k\in\mathbb Z) (k∈Z) sin ⁡ ( − α ) = − sin ⁡ α \sin(-\alpha)=-\sin \alpha sin(−α)=−sinα sin ⁡ ( π − α ) = sin ⁡ α \sin (\pi-\alpha)=\sin \alpha sin(π−α)=sinα
cos ⁡ ( α + 2 k π ) = cos ⁡ α \cos(\alpha+2k\pi)=\cos \alpha cos(α+2kπ)=cosα ( k ∈ Z ) (k\in\mathbb Z) (k∈Z) cos ⁡ ( − α ) = cos ⁡ α \cos(-\alpha)=\cos \alpha cos(−α)=cosα cos ⁡ ( π − α ) = − cos ⁡ α \cos (\pi-\alpha)=-\cos \alpha cos(π−α)=−cosα
tan ⁡ ( α + 2 k π ) = tan ⁡ α \tan(\alpha+2k\pi)=\tan \alpha tan(α+2kπ)=tanα ( k ∈ Z ) (k\in\mathbb Z) (k∈Z) tan ⁡ ( − α ) = − tan ⁡ α \tan (-\alpha)=-\tan \alpha tan(−α)=−tanα tan ⁡ ( π − α ) = − tan ⁡ α \tan (\pi-\alpha)=-\tan \alpha tan(π−α)=−tanα
公式四 公式五 公式六
sin ⁡ ( π + α ) = − sin ⁡ α \sin (\pi+\alpha)=-\sin \alpha sin(π+α)=−sinα sin ⁡ ( π 2 − α ) = cos ⁡ α \sin (\dfrac{\pi}{2}-\alpha)=\cos \alpha sin(2π−α)=cosα sin ⁡ ( π 2 + α ) = cos ⁡ α \sin (\dfrac{\pi}{2}+\alpha)=\cos \alpha sin(2π+α)=cosα
cos ⁡ ( π + α ) = − cos ⁡ α \cos (\pi+\alpha)=-\cos \alpha cos(π+α)=−cosα cos ⁡ ( π 2 − α ) = sin ⁡ α \cos (\dfrac{\pi}{2}-\alpha)=\sin \alpha cos(2π−α)=sinα cos ⁡ ( π 2 + α ) = − sin ⁡ α \cos (\dfrac{\pi}{2}+\alpha)=-\sin \alpha cos(2π+α)=−sinα
tan ⁡ ( π + α ) = tan ⁡ α \tan (\pi+\alpha)=\tan \alpha tan(π+α)=tanα tan ⁡ ( π 2 − α ) = 1 tan ⁡ α \tan (\dfrac{\pi}{2}-\alpha)=\dfrac{1}{\tan \alpha} tan(2π−α)=tanα1 tan ⁡ ( π 2 + α ) = − 1 tan ⁡ α \tan (\dfrac{\pi}{2}+\alpha)=-\dfrac{1}{\tan \alpha} tan(2π+α)=−tanα1

基本公式

同角三角函数关系

sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2\alpha+\cos^2\alpha=1 sin2α+cos2α=1
sin ⁡ α cos ⁡ α = tan ⁡ α \dfrac{\sin\alpha}{\cos\alpha}=\tan\alpha cosαsinα=tanα

如图所示,取一单位圆 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1,在单位圆上任取一点 P ( x , y ) P(x,y) P(x,y)

根据正、余弦和正切函数在单位圆内的定义,可得 sin ⁡ α = y r = y \sin\alpha=\dfrac{y}{r}=y sinα=ry=y, cos ⁡ α = x r = x \cos\alpha=\dfrac{x}{r}=x cosα=rx=x, tan ⁡ α = y x \tan\alpha=\dfrac{y}{x} tanα=xy
∴ sin ⁡ 2 α + cos ⁡ 2 α = y 2 + x 2 = 1 , sin ⁡ α cos ⁡ α = y x = tan ⁡ α \therefore \sin^2\alpha+\cos^2\alpha=y^2+x^2=1,\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{y}{x}=\tan\alpha ∴sin2α+cos2α=y2+x2=1,cosαsinα=xy=tanα

和差公式

S ( α ± β ) : sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β S_{(\alpha\pm\beta)}:\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta S(α±β):sin(α±β)=sinαcosβ±cosαsinβ
C ( α ± β ) : cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β C_{(\alpha\pm\beta)}:\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta C(α±β):cos(α±β)=cosαcosβ∓sinαsinβ
T ( α ± β ) : tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β T_{(\alpha\pm\beta)}:\tan(\alpha\pm\beta)=\dfrac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} T(α±β):tan(α±β)=1∓tanαtanβtanα±tanβ

如图所示,取一单位圆 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1,在单位圆上取两点 A A A、 B B B,记 ∠ A O x = α \angle AOx=\alpha ∠AOx=α, ∠ B O x = β \angle BOx=\beta ∠BOx=β
(图似乎画的有点问题, α \alpha α、 β \beta β其实应该调换一下位置的,我有时间再改吧)

根据圆的参数方程,可设 A ( cos ⁡ α , sin ⁡ α ) A(\cos \alpha,\sin \alpha) A(cosα,sinα), B ( cos ⁡ β , sin ⁡ β ) B(\cos \beta,\sin \beta) B(cosβ,sinβ)
∴ O A → = ( cos ⁡ α , sin ⁡ α ) \therefore \overrightarrow{OA}=(\cos \alpha,\sin \alpha) ∴OA =(cosα,sinα), O B → = ( cos ⁡ β , sin ⁡ β ) \overrightarrow{OB}=(\cos \beta,\sin \beta) OB =(cosβ,sinβ)
∵ \because ∵单位圆的半径 r = 1 r=1 r=1
∴ ∣ O A → ∣ = 1 \therefore |\overrightarrow{OA}|=1 ∴∣OA ∣=1, ∣ O B → ∣ = 1 |\overrightarrow{OB}|=1 ∣OB ∣=1
∴ O A → ⋅ O B → = ∣ O A → ∣ ∣ O B → ∣ cos ⁡ ( α − β ) = 1 × 1 × cos ⁡ ( α − β ) \therefore \overrightarrow{OA}\cdot\overrightarrow{OB}=|\overrightarrow{OA}||\overrightarrow{OB}|\cos(\alpha-\beta)=1\times1\times\cos(\alpha-\beta) ∴OA ⋅OB =∣OA ∣∣OB ∣cos(α−β)=1×1×cos(α−β)
O A → ⋅ O B → = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \overrightarrow{OA}\cdot\overrightarrow{OB}=\cos\alpha\cos\beta+\sin\alpha\sin\beta OA ⋅OB =cosαcosβ+sinαsinβ
∴ cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \therefore \cos(\alpha-\beta)=\cos \alpha\cos \beta+\sin \alpha\sin \beta ∴cos(α−β)=cosαcosβ+sinαsinβ

用 − β -\beta −β代替掉原来 β \beta β的位置,可得 cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ ( − β ) + sin ⁡ α sin ⁡ ( − β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \cos(\alpha+\beta)=\cos \alpha\cos (-\beta)+\sin\alpha\sin (-\beta)=\cos \alpha\cos \beta-\sin \alpha\sin\beta cos(α+β)=cosαcos(−β)+sinαsin(−β)=cosαcosβ−sinαsinβ

用 π 2 − α \dfrac{\pi}{2}-\alpha 2π−α代替掉 cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \cos(\alpha-\beta)=\cos \alpha\cos \beta+\sin \alpha\sin \beta cos(α−β)=cosαcosβ+sinαsinβ中 α \alpha α的位置,可得 cos ⁡ [ ( π 2 − α ) − β ] = cos ⁡ ( π 2 − α ) cos ⁡ β + sin ⁡ ( π 2 − α ) sin ⁡ β \cos[(\dfrac{\pi}{2}-\alpha)-\beta]=\cos (\dfrac{\pi}{2}-\alpha)\cos \beta+\sin (\dfrac{\pi}{2}-\alpha)\sin \beta cos[(2π−α)−β]=cos(2π−α)cosβ+sin(2π−α)sinβ

对等式两侧使用诱导公式,可得
sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β \sin (\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha\sin \beta sin(α+β)=sinαcosβ+cosαsinβ

用 − β -\beta −β代替掉原来 β \beta β的位置,可得 sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ ( − β ) + cos ⁡ α sin ⁡ ( − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α − β ) \sin(\alpha+\beta)=\sin \alpha\cos (-\beta)+\cos\alpha\sin (-\beta)=\cos \alpha\cos \beta+\sin \alpha-\beta) sin(α+β)=sinαcos(−β)+cosαsin(−β)=cosαcosβ+sinα−β)

由此得到 sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta sin(α±β)=sinαcosβ±cosαsinβ、 cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta cos(α±β)=cosαcosβ∓sinαsinβ

∴ tan ⁡ ( α ± β ) = sin ⁡ ( α ± β ) cos ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \therefore\tan(\alpha\pm\beta)=\dfrac{\sin(\alpha\pm\beta)}{\cos(\alpha\pm\beta)}=\dfrac{\sin\alpha\cos\beta\pm\cos\alpha\sin\beta}{\cos\alpha\cos\beta\mp\sin\alpha\sin\beta}=\dfrac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} ∴tan(α±β)=cos(α±β)sin(α±β)=cosαcosβ∓sinαsinβsinαcosβ±cosαsinβ=1∓tanαtanβtanα±tanβ(上下同时除以 cos ⁡ α cos ⁡ β \cos\alpha\cos\beta cosαcosβ)

二倍角公式

S 2 α : sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α S_{2\alpha}:\sin2\alpha=2\sin\alpha\cos\alpha S2α:sin2α=2sinαcosα
C 2 α : cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α C_{2\alpha}:\cos2\alpha=\cos^2\alpha-\sin^2\alpha C2α:cos2α=cos2α−sin2α
T 2 α : tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α T_{2\alpha}:\tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^{2}\alpha} T2α:tan2α=1−tan2α2tanα

sin ⁡ 2 α = sin ⁡ ( α + α ) = sin ⁡ α cos ⁡ α + cos ⁡ α sin ⁡ α = 2 sin ⁡ α cos ⁡ α \sin2\alpha=\sin(\alpha+\alpha)=\sin\alpha\cos\alpha+\cos\alpha\sin\alpha=2\sin\alpha\cos\alpha sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα
cos ⁡ 2 α = cos ⁡ ( α + α ) = cos ⁡ α cos ⁡ α − sin ⁡ α sin ⁡ α = cos ⁡ 2 α − sin ⁡ 2 α \cos2\alpha=\cos(\alpha+\alpha)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha cos2α=cos(α+α)=cosαcosα−sinαsinα=cos2α−sin2α
tan ⁡ 2 α = tan ⁡ ( α + α ) = tan ⁡ α + tan ⁡ α 1 − tan ⁡ α tan ⁡ α 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\tan(\alpha+\alpha)=\dfrac{\tan\alpha+\tan\alpha}{1-\tan\alpha\tan\alpha}\dfrac{2\tan\alpha}{1-\tan^2\alpha} tan2α=tan(α+α)=1−tanαtanαtanα+tanα1−tan2α2tanα

辅助角公式

a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + φ ) = a 2 + b 2 cos ⁡ ( α − θ ) a \sin \alpha+ b \cos \alpha= \sqrt{a^2 + b^2} \sin(\alpha+ \varphi) = \sqrt{a^2 + b^2} \cos(\alpha - \theta) asinα+bcosα=a2+b2 sin(α+φ)=a2+b2 cos(α−θ)

其中 tan ⁡ φ = b a \tan \varphi= \dfrac{b}{a} tanφ=ab, tan ⁡ θ = a b \tan \theta = \dfrac{a}{b} tanθ=ba

重要公式

升幂公式

1 + cos ⁡ 2 α = 2 cos ⁡ 2 α 1 + \cos 2\alpha= 2 \cos^2 \alpha 1+cos2α=2cos2α
1 − cos ⁡ 2 α = 2 sin ⁡ 2 α 1 - \cos 2\alpha= 2 \sin^2 \alpha 1−cos2α=2sin2α
1 + sin ⁡ 2 α = ( sin ⁡ α + cos ⁡ α ) 2 1 + \sin 2\alpha= (\sin \alpha + \cos \alpha)^2 1+sin2α=(sinα+cosα)2
1 − sin ⁡ 2 α = ( sin ⁡ α − cos ⁡ α ) 2 1 - \sin 2\alpha= (\sin \alpha - \cos \alpha)^2 1−sin2α=(sinα−cosα)2

∵ cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α \because \cos2\alpha=\cos^2\alpha-\sin^2\alpha ∵cos2α=cos2α−sin2α
∴ cos ⁡ 2 α = sin ⁡ 2 α + cos ⁡ 2 α \therefore \cos^2\alpha=\sin^2\alpha+\cos2\alpha ∴cos2α=sin2α+cos2α
cos ⁡ 2 α + cos ⁡ 2 α = sin ⁡ 2 α + cos ⁡ 2 α + cos ⁡ 2 α \cos^2\alpha+\cos^2\alpha=\sin^2\alpha+\cos^2\alpha+\cos 2\alpha cos2α+cos2α=sin2α+cos2α+cos2α
2 cos ⁡ 2 α = sin ⁡ 2 α + cos ⁡ 2 α + cos ⁡ 2 α 2\cos^2\alpha=\sin^2\alpha+\cos^2\alpha+\cos2\alpha 2cos2α=sin2α+cos2α+cos2α
2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2\cos^2\alpha=1+\cos2\alpha 2cos2α=1+cos2α

∵ cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α \because \cos2\alpha=\cos^2\alpha-\sin^2\alpha ∵cos2α=cos2α−sin2α
∴ sin ⁡ 2 α = cos ⁡ 2 α − cos ⁡ 2 α \therefore \sin^2\alpha=\cos^2\alpha-\cos2\alpha ∴sin2α=cos2α−cos2α
sin ⁡ 2 α + sin ⁡ 2 α = cos ⁡ 2 α + sin ⁡ 2 α − cos ⁡ 2 α \sin^2\alpha+\sin^2\alpha=\cos^2\alpha+\sin^2\alpha-\cos 2\alpha sin2α+sin2α=cos2α+sin2α−cos2α
2 sin ⁡ 2 α = cos ⁡ 2 α + sin ⁡ 2 α − cos ⁡ 2 α 2\sin^2\alpha=\cos^2\alpha+\sin^2\alpha-\cos2\alpha 2sin2α=cos2α+sin2α−cos2α
2 sin ⁡ 2 α = 1 − cos ⁡ 2 α 2\sin^2\alpha=1-\cos2\alpha 2sin2α=1−cos2α

1 + sin ⁡ 2 α = sin ⁡ 2 α + cos ⁡ 2 α + 2 sin ⁡ α cos ⁡ α = ( sin ⁡ α + cos ⁡ α ) 2 1+\sin 2\alpha=\sin^2\alpha+\cos^2\alpha+2\sin \alpha\cos \alpha=(\sin \alpha+\cos \alpha)^2 1+sin2α=sin2α+cos2α+2sinαcosα=(sinα+cosα)2

1 − sin ⁡ 2 α = sin ⁡ 2 α + cos ⁡ 2 α − 2 sin ⁡ α cos ⁡ α = ( sin ⁡ α − cos ⁡ α ) 2 1-\sin 2\alpha=\sin^2\alpha+\cos^2\alpha-2\sin \alpha\cos \alpha=(\sin \alpha-\cos \alpha)^2 1−sin2α=sin2α+cos2α−2sinαcosα=(sinα−cosα)2

降幂公式

sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) \sin^2 \alpha = \dfrac{1}{2}(1 - \cos 2\alpha) sin2α=21(1−cos2α)
cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) \cos^2 \alpha= \dfrac{1}{2}(1 + \cos 2\alpha) cos2α=21(1+cos2α)

∵ 2 sin ⁡ 2 α = 1 − cos ⁡ 2 α \because 2\sin^2\alpha=1-\cos2\alpha ∵2sin2α=1−cos2α
∴ sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) \therefore \sin^2\alpha=\dfrac12(1-\cos2\alpha) ∴sin2α=21(1−cos2α)

∵ 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α \because 2\cos^2\alpha=1+\cos2\alpha ∵2cos2α=1+cos2α
∴ cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) \therefore \cos^2\alpha=\dfrac12(1+\cos2\alpha) ∴cos2α=21(1+cos2α)

逆用倍角公式

sin ⁡ α = sin ⁡ 2 α 2 cos ⁡ α \sin \alpha = \dfrac{\sin 2\alpha}{2 \cos \alpha} sinα=2cosαsin2α
cos ⁡ α = sin ⁡ 2 α 2 sin ⁡ α \cos \alpha = \dfrac{\sin 2\alpha}{2 \sin \alpha} cosα=2sinαsin2α
tan ⁡ α = tan ⁡ 2 α ( 1 − tan ⁡ 2 α ) 2 \tan \alpha = \dfrac{\tan 2\alpha(1 - \tan^2 \alpha)}{2} tanα=2tan2α(1−tan2α)
( cos ⁡ α + sin ⁡ α ) ( cos ⁡ α − sin ⁡ α ) = cos ⁡ 2 α − sin ⁡ 2 α = cos ⁡ 2 α (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)=\cos^2 \alpha - \sin^2 \alpha = \cos2\alpha (cosα+sinα)(cosα−sinα)=cos2α−sin2α=cos2α
2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α = cos ⁡ 2 α 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha = \cos 2\alpha 2cos2α−1=1−2sin2α=cos2α

∵ sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \because\sin 2\alpha=2\sin \alpha\cos \alpha ∵sin2α=2sinαcosα
∴ sin ⁡ α = sin ⁡ 2 α 2 cos ⁡ α \therefore\sin \alpha = \dfrac{\sin 2\alpha}{2 \cos \alpha} ∴sinα=2cosαsin2α, cos ⁡ α = sin ⁡ 2 α 2 sin ⁡ α \cos \alpha = \dfrac{\sin 2\alpha}{2 \sin \alpha} cosα=2sinαsin2α
∵ tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \because \tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^{2}\alpha} ∵tan2α=1−tan2α2tanα
∴ tan ⁡ α = tan ⁡ 2 α ( 1 − tan ⁡ 2 α ) 2 \therefore \tan \alpha = \dfrac{\tan 2\alpha(1 - \tan^2 \alpha)}{2} ∴tanα=2tan2α(1−tan2α)

∵ cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α \because\cos2\alpha=\cos^2\alpha-\sin^2\alpha ∵cos2α=cos2α−sin2α
∴ ( cos ⁡ α + sin ⁡ α ) ( cos ⁡ α − sin ⁡ α ) = cos ⁡ 2 α − sin ⁡ 2 α = cos ⁡ 2 α \therefore(\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)=\cos^2 \alpha - \sin^2 \alpha = \cos2\alpha ∴(cosα+sinα)(cosα−sinα)=cos2α−sin2α=cos2α

∵ sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) \because\sin^2 \alpha = \dfrac{1}{2}(1 - \cos 2\alpha) ∵sin2α=21(1−cos2α), cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) \cos^2 \alpha= \dfrac{1}{2}(1 + \cos 2\alpha) cos2α=21(1+cos2α)
∴ 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α = cos ⁡ 2 α \therefore 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha = \cos 2\alpha ∴2cos2α−1=1−2sin2α=cos2α

积化和差

cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos\alpha\cos\beta=\dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(α−β)]
sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin\alpha\sin\beta=-\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=−21[cos(α+β)−cos(α−β)]
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin\alpha\cos\beta=\dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(α−β)]
cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos\alpha\sin\beta=\dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)−sin(α−β)]

1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] = 1 2 ( cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β + cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β ) = 1 2 ⋅ 2 cos ⁡ α cos ⁡ β = cos ⁡ α cos ⁡ β \dfrac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)]=\dfrac12(\cos\alpha\cos \beta-\sin \alpha\sin \beta+\cos \alpha\cos \beta+\sin \alpha\sin \beta)=\dfrac12\cdot2\cos \alpha\cos \beta=\cos \alpha\cos \beta 21[cos(α+β)+cos(α−β)]=21(cosαcosβ−sinαsinβ+cosαcosβ+sinαsinβ)=21⋅2cosαcosβ=cosαcosβ

− 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] = − 1 2 ( cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β − cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β ) = − 1 2 ⋅ ( − 2 sin ⁡ α sin ⁡ β ) = sin ⁡ α sin ⁡ β -\dfrac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)]=-\dfrac12(\cos \alpha\cos \beta-\sin \alpha\sin \beta-\cos \alpha\cos \beta-\sin \alpha\sin \beta)=-\dfrac12\cdot(-2\sin \alpha\sin \beta)=\sin \alpha\sin \beta −21[cos(α+β)−cos(α−β)]=−21(cosαcosβ−sinαsinβ−cosαcosβ−sinαsinβ)=−21⋅(−2sinαsinβ)=sinαsinβ

1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] = 1 2 ( sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α + sin ⁡ α cos ⁡ β − sin ⁡ β cos ⁡ α ) = 1 2 ⋅ 2 sin ⁡ α cos ⁡ β = sin ⁡ α cos ⁡ β \dfrac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)]=\dfrac12(\sin \alpha\cos \beta+\sin \beta\cos \alpha+\sin \alpha\cos \beta-\sin \beta\cos \alpha)=\dfrac12\cdot2\sin \alpha\cos \beta=\sin \alpha\cos \beta 21[sin(α+β)+sin(α−β)]=21(sinαcosβ+sinβcosα+sinαcosβ−sinβcosα)=21⋅2sinαcosβ=sinαcosβ

1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] = 1 2 ( sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α − sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α ) = 1 2 ⋅ 2 sin ⁡ β cos ⁡ α = cos ⁡ α sin ⁡ β \dfrac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)]=\dfrac12(\sin \alpha\cos \beta+\sin \beta\cos \alpha-\sin \alpha\cos \beta+\sin \beta\cos \alpha)=\dfrac12\cdot2\sin \beta\cos \alpha=\cos \alpha\sin \beta 21[sin(α+β)−sin(α−β)]=21(sinαcosβ+sinβcosα−sinαcosβ+sinβcosα)=21⋅2sinβcosα=cosαsinβ

和差化积

cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2α−β
cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosα−cosβ=−2sin2α+βsin2α−β
sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2α−β
sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta=2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} sinα−sinβ=2cos2α+βsin2α−β

令 A + B = α A+B=\alpha A+B=α, A − B = β A-B=\beta A−B=β
∴ { A + B = α A − B = β \therefore\left\{ \begin{aligned}&A+B=\alpha\\&A-B=\beta\end{aligned}\right. ∴{A+B=αA−B=β

解得 { A = α + β 2 B = α − β 2 \left\{ \begin{aligned}&A=\dfrac{\alpha+\beta}{2}\\&B=\dfrac{\alpha-\beta}{2}\end{aligned}\right. ⎩ ⎨ ⎧A=2α+βB=2α−β

cos ⁡ α + cos ⁡ β = cos ⁡ ( A + B ) + cos ⁡ ( A − B ) = cos ⁡ A cos ⁡ B − sin ⁡ A sin ⁡ B + cos ⁡ A cos ⁡ B + sin ⁡ A sin ⁡ B = 2 cos ⁡ A cos ⁡ B = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=\cos (A+B)+\cos (A-B)=\cos A\cos B-\sin A\sin B+\cos A\cos B+\sin A\sin B=2\cos A\cos B=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} cosα+cosβ=cos(A+B)+cos(A−B)=cosAcosB−sinAsinB+cosAcosB+sinAsinB=2cosAcosB=2cos2α+βcos2α−β

cos ⁡ α − cos ⁡ β = cos ⁡ ( A + B ) − cos ⁡ ( A − B ) = cos ⁡ A cos ⁡ B − sin ⁡ A sin ⁡ B − cos ⁡ A cos ⁡ B − sin ⁡ A sin ⁡ B = − 2 sin ⁡ A sin ⁡ B = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=\cos (A+B)-\cos (A-B)=\cos A\cos B-\sin A\sin B-\cos A\cos B-\sin A\sin B=-2\sin A\sin B=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} cosα−cosβ=cos(A+B)−cos(A−B)=cosAcosB−sinAsinB−cosAcosB−sinAsinB=−2sinAsinB=−2sin2α+βsin2α−β

sin ⁡ α + sin ⁡ β = sin ⁡ ( A + B ) + sin ⁡ ( A − B ) = sin ⁡ A cos ⁡ B + sin ⁡ B cos ⁡ A + sin ⁡ A cos ⁡ B − sin ⁡ B cos ⁡ A = 2 sin ⁡ A cos ⁡ B = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=\sin (A+B)+\sin (A-B)=\sin A\cos B+\sin B\cos A+\sin A\cos B-\sin B\cos A=2\sin A\cos B=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2} sinα+sinβ=sin(A+B)+sin(A−B)=sinAcosB+sinBcosA+sinAcosB−sinBcosA=2sinAcosB=2sin2α+βcos2α−β

sin ⁡ α − sin ⁡ β = sin ⁡ ( A + B ) − sin ⁡ ( A − B ) = sin ⁡ A cos ⁡ B + sin ⁡ B cos ⁡ A − sin ⁡ A cos ⁡ B + sin ⁡ B cos ⁡ A = 2 sin ⁡ B cos ⁡ A = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta=\sin (A+B)-\sin (A-B)=\sin A\cos B+\sin B\cos A-\sin A\cos B+\sin B\cos A=2\sin B\cos A=2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2} sinα−sinβ=sin(A+B)−sin(A−B)=sinAcosB+sinBcosA−sinAcosB+sinBcosA=2sinBcosA=2cos2α+βsin2α−β

半角公式

sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \sin\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-\cos\alpha}{2}} sin2α=±21−cosα
cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \cos\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1+\cos\alpha}{2}} cos2α=±21+cosα
tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α \tan\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}} tan2α=±1+cosα1−cosα
tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α \tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha} tan2α=sinα1−cosα=1+cosαsinα

∵ 1 + cos ⁡ 2 α = 2 cos ⁡ 2 α \because1+\cos 2\alpha=2\cos^2\alpha ∵1+cos2α=2cos2α
∴ 1 + cos ⁡ α = 2 cos ⁡ 2 α 2 \therefore1+\cos \alpha=2\cos^2\dfrac{\alpha}{2} ∴1+cosα=2cos22α
∴ cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \therefore\cos\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1+\cos\alpha}{2}} ∴cos2α=±21+cosα

∵ 1 − cos ⁡ 2 α = 2 sin ⁡ 2 α \because1-\cos 2\alpha=2\sin^2\alpha ∵1−cos2α=2sin2α
∴ 1 − cos ⁡ α = 2 sin ⁡ 2 α 2 \therefore1-\cos \alpha=2\sin^2\dfrac{\alpha}{2} ∴1−cosα=2sin22α
∴ sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \therefore\sin\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-\cos\alpha}{2}} ∴sin2α=±21−cosα

∴ tan ⁡ α 2 = sin ⁡ α 2 cos ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α \therefore\tan\dfrac{\alpha}{2}=\dfrac{\sin\dfrac{\alpha}{2}}{\cos \dfrac{\alpha}{2}}=\pm\sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}} ∴tan2α=cos2αsin2α=±1+cosα1−cosα

tan ⁡ α 2 = sin ⁡ α 2 cos ⁡ α 2 = 2 sin ⁡ α 2 cos ⁡ α 2 2 cos ⁡ 2 α 2 = sin ⁡ α 1 + cos ⁡ α \tan \dfrac{\alpha}{2}=\dfrac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}=\dfrac{2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2}}=\dfrac{\sin \alpha}{1+\cos \alpha} tan2α=cos2αsin2α=2cos22α2sin2αcos2α=1+cosαsinα

tan ⁡ α 2 = sin ⁡ α 2 cos ⁡ α 2 = 2 sin ⁡ 2 α 2 2 sin ⁡ α 2 cos ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α \tan \dfrac{\alpha}{2}=\dfrac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}=\dfrac{2\sin^2\frac{\alpha}{2}}{2\sin \frac{\alpha}{2}\cos\frac{\alpha}{2}}=\dfrac{1-\cos \alpha}{\sin \alpha} tan2α=cos2αsin2α=2sin2αcos2α2sin22α=sinα1−cosα

其它公式

三倍角公式

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α \sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha sin3α=3sinα−4sin3α
cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha cos3α=4cos3α−3cosα
tan ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α \tan 3\alpha = \dfrac{3 \tan \alpha - \tan^3 \alpha}{1 - 3 \tan^2 \alpha} tan3α=1−3tan2α3tanα−tan3α

sin ⁡ 3 α = sin ⁡ ( 2 α + α ) = sin ⁡ 2 α cos ⁡ α + cos ⁡ 2 α sin ⁡ α = 2 sin ⁡ α ( 1 − sin ⁡ 2 α ) + ( 1 − 2 sin ⁡ 2 α ) sin ⁡ α = 3 sin ⁡ α − 4 sin ⁡ 3 α \sin 3\alpha=\sin (2\alpha+\alpha)=\sin 2\alpha\cos \alpha+\cos 2\alpha\sin \alpha=2\sin \alpha(1-\sin^2\alpha)+(1-2\sin^2\alpha)\sin \alpha=3\sin \alpha-4\sin^3\alpha sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinα(1−sin2α)+(1−2sin2α)sinα=3sinα−4sin3α

cos ⁡ 3 α = cos ⁡ ( 2 α + α ) = cos ⁡ 2 α cos ⁡ α − sin ⁡ 2 α sin ⁡ α = ( 2 cos ⁡ 2 α − 1 ) cos ⁡ α − 2 ( 1 − cos ⁡ 2 α ) cos ⁡ α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos 3\alpha=\cos (2\alpha+\alpha)=\cos 2\alpha\cos \alpha-\sin 2\alpha\sin \alpha=(2\cos^2\alpha-1)\cos \alpha-2(1-\cos^2\alpha)\cos \alpha=4\cos^3\alpha-3\cos \alpha cos3α=cos(2α+α)=cos2αcosα−sin2αsinα=(2cos2α−1)cosα−2(1−cos2α)cosα=4cos3α−3cosα

tan ⁡ 3 α = sin ⁡ 3 α cos ⁡ 3 α = sin ⁡ ( α + 2 α ) cos ⁡ ( α + 2 α ) = sin ⁡ α cos ⁡ 2 α + cos ⁡ α sin ⁡ 2 α cos ⁡ α cos ⁡ 2 α − sin ⁡ α sin ⁡ 2 α = sin ⁡ α ( cos ⁡ 2 α − sin ⁡ 2 α ) + cos ⁡ α ⋅ 2 sin ⁡ α cos ⁡ α cos ⁡ α ( cos ⁡ 2 α − sin ⁡ 2 α ) − sin ⁡ α ⋅ 2 sin ⁡ α cos ⁡ α = sin ⁡ α cos ⁡ 2 α − sin ⁡ 3 α + 2 sin ⁡ α cos ⁡ 2 α cos ⁡ 3 α − sin ⁡ 2 α cos ⁡ α − 2 sin ⁡ 2 α cos ⁡ α = 3 sin ⁡ α cos ⁡ 2 α − sin ⁡ 3 α cos ⁡ 3 α − 3 sin ⁡ 2 α cos ⁡ α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α \tan 3\alpha=\dfrac{\sin 3\alpha}{\cos 3\alpha}=\dfrac{\sin (\alpha+2\alpha)}{\cos (\alpha+2\alpha)}=\dfrac{\sin \alpha\cos 2\alpha+\cos \alpha\sin 2\alpha}{\cos \alpha\cos 2\alpha-\sin \alpha\sin 2\alpha}=\dfrac{\sin \alpha(\cos^2\alpha-\sin ^2\alpha)+\cos \alpha\cdot2\sin \alpha\cos\alpha}{\cos \alpha(\cos ^2\alpha-\sin ^2\alpha)-\sin \alpha\cdot2\sin \alpha\cos \alpha}=\dfrac{\sin \alpha\cos^2\alpha-\sin^3\alpha+2\sin \alpha\cos^2\alpha}{\cos^3\alpha-\sin ^2\alpha\cos \alpha-2\sin^2\alpha\cos \alpha}=\dfrac{3\sin \alpha\cos^2\alpha-\sin^3\alpha}{\cos^3\alpha-3\sin^2\alpha\cos \alpha}=\dfrac{3\tan \alpha-\tan^3\alpha}{1-3\tan^2\alpha} tan3α=cos3αsin3α=cos(α+2α)sin(α+2α)=cosαcos2α−sinαsin2αsinαcos2α+cosαsin2α=cosα(cos2α−sin2α)−sinα⋅2sinαcosαsinα(cos2α−sin2α)+cosα⋅2sinαcosα=cos3α−sin2αcosα−2sin2αcosαsinαcos2α−sin3α+2sinαcos2α=cos3α−3sin2αcosα3sinαcos2α−sin3α=1−3tan2α3tanα−tan3α

万能公式

sin ⁡ α = 2 tan ⁡ α 2 tan ⁡ 2 α 2 + 1 \sin \alpha=\dfrac{2\tan \dfrac{\alpha}{2}}{\tan^2\dfrac{\alpha}{2}+1} sinα=tan22α+12tan2α
cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos \alpha=\dfrac{1-\tan^2\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}} cosα=1+tan22α1−tan22α
tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan \alpha=\dfrac{2\tan \dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}} tanα=1−tan22α2tan2α

sin ⁡ α = 2 sin ⁡ α 2 cos ⁡ α 2 = 2 sin ⁡ α 2 cos ⁡ α 2 2 sin ⁡ 2 α 2 + cos ⁡ 2 α 2 = 2 tan ⁡ α 2 tan ⁡ 2 α 2 + 1 \sin \alpha=2\sin\dfrac{\alpha}{2}\cos \dfrac{\alpha}{2}=\dfrac{2\sin \dfrac{\alpha}{2}\cos \dfrac{\alpha}{2}}{2\sin^2\dfrac{\alpha}{2}+\cos^2\dfrac{\alpha}{2}}=\dfrac{2\tan \dfrac{\alpha}{2}}{\tan^2\dfrac{\alpha}{2}+1} sinα=2sin2αcos2α=2sin22α+cos22α2sin2αcos2α=tan22α+12tan2α

cos ⁡ α = cos ⁡ 2 α 2 − sin ⁡ 2 α 2 = cos ⁡ 2 α 2 − sin ⁡ 2 α 2 sin ⁡ 2 α 2 + cos ⁡ 2 α 2 = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos \alpha=\cos^2\dfrac{\alpha}{2}-\sin^2\dfrac{\alpha}{2}=\dfrac{\cos^2\dfrac{\alpha}{2}-\sin^2\dfrac{\alpha}{2}}{\sin^2\dfrac{\alpha}{2}+\cos^2\dfrac{\alpha}{2}}=\dfrac{1-\tan^2\dfrac{\alpha}{2}}{1+\tan^2\dfrac{\alpha}{2}} cosα=cos22α−sin22α=sin22α+cos22αcos22α−sin22α=1+tan22α1−tan22α

tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan \alpha=\dfrac{2\tan \dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}} tanα=1−tan22α2tan2α

类平方差公式

sin ⁡ 2 α − sin ⁡ 2 β = sin ⁡ ( α + β ) sin ⁡ ( α − β ) \sin^2 \alpha - \sin^2 \beta = \sin(\alpha + \beta) \sin(\alpha - \beta) sin2α−sin2β=sin(α+β)sin(α−β)
cos ⁡ 2 α − cos ⁡ 2 β = − sin ⁡ ( α + β ) sin ⁡ ( α − β ) \cos^2 \alpha - \cos^2 \beta = -\sin(\alpha + \beta) \sin(\alpha - \beta) cos2α−cos2β=−sin(α+β)sin(α−β)
cos ⁡ 2 α − sin ⁡ 2 β = cos ⁡ ( α + β ) cos ⁡ ( α − β ) \cos^2 \alpha - \sin^2 \beta = \cos(\alpha + \beta) \cos(\alpha - \beta) cos2α−sin2β=cos(α+β)cos(α−β)

sin ⁡ ( α + β ) sin ⁡ ( α − β ) = ( sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α ) ( sin ⁡ α cos ⁡ β − sin ⁡ β cos ⁡ α ) = sin ⁡ 2 α cos ⁡ 2 β − sin ⁡ 2 β cos ⁡ 2 α = sin ⁡ 2 α ( 1 − sin ⁡ 2 β ) − sin ⁡ 2 β ( 1 − sin ⁡ 2 α ) = sin ⁡ 2 α − sin ⁡ 2 α sin ⁡ 2 β − sin ⁡ 2 β + sin ⁡ 2 α sin ⁡ 2 β = sin ⁡ 2 α − sin ⁡ 2 β \sin(\alpha + \beta) \sin(\alpha - \beta)=(\sin \alpha\cos \beta+\sin \beta\cos \alpha)(\sin \alpha\cos \beta-\sin \beta\cos \alpha)=\sin^2\alpha\cos^2\beta-\sin^2\beta\cos^2\alpha=\sin^2\alpha(1-\sin^2\beta)-\sin^2\beta(1-\sin^2\alpha)=\sin^2\alpha-\sin^2\alpha\sin^2\beta-\sin^2\beta+\sin^2\alpha\sin^2\beta=\sin^2 \alpha - \sin^2 \beta sin(α+β)sin(α−β)=(sinαcosβ+sinβcosα)(sinαcosβ−sinβcosα)=sin2αcos2β−sin2βcos2α=sin2α(1−sin2β)−sin2β(1−sin2α)=sin2α−sin2αsin2β−sin2β+sin2αsin2β=sin2α−sin2β

− sin ⁡ ( α + β ) sin ⁡ ( α − β ) = − ( sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α ) ( sin ⁡ α cos ⁡ β − sin ⁡ β cos ⁡ α ) = − ( sin ⁡ 2 α cos ⁡ 2 β − sin ⁡ 2 β cos ⁡ 2 α ) = − [ ( 1 − cos ⁡ 2 α ) cos ⁡ 2 β − ( 1 − cos ⁡ 2 β ) cos ⁡ 2 α ] = − ( cos ⁡ 2 β − cos ⁡ 2 α cos ⁡ 2 β − cos ⁡ 2 α + cos ⁡ 2 α cos ⁡ 2 β ) = − ( cos ⁡ 2 β − cos ⁡ 2 α ) = cos ⁡ 2 α − cos ⁡ 2 β -\sin(\alpha+\beta)\sin (\alpha-\beta)=-(\sin \alpha\cos \beta+\sin \beta\cos \alpha)(\sin \alpha\cos \beta-\sin \beta\cos \alpha)=-(\sin^2\alpha\cos^2\beta-\sin^2\beta\cos^2\alpha)=-[(1-\cos^2\alpha)\cos^2\beta-(1-\cos^2\beta)\cos^2\alpha]=-(\cos^2\beta-\cos^2\alpha\cos^2\beta-\cos^2\alpha+\cos^2\alpha\cos^2\beta)=-(\cos^2\beta-\cos^2\alpha)=\cos^2 \alpha - \cos^2 \beta −sin(α+β)sin(α−β)=−(sinαcosβ+sinβcosα)(sinαcosβ−sinβcosα)=−(sin2αcos2β−sin2βcos2α)=−[(1−cos2α)cos2β−(1−cos2β)cos2α]=−(cos2β−cos2αcos2β−cos2α+cos2αcos2β)=−(cos2β−cos2α)=cos2α−cos2β

cos ⁡ ( α + β ) cos ⁡ ( α − β ) = ( cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β ) ( cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β ) = cos ⁡ 2 α cos ⁡ 2 β − sin ⁡ 2 α sin ⁡ 2 β = cos ⁡ 2 α ( 1 − sin ⁡ 2 β ) − ( 1 − cos ⁡ 2 α ) sin ⁡ 2 β = cos ⁡ 2 α − cos ⁡ 2 α sin ⁡ 2 β − sin ⁡ 2 β + sin ⁡ 2 β cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 β \cos(\alpha + \beta) \cos(\alpha - \beta)=(\cos \alpha\cos \beta-\sin \alpha\sin \beta)(\cos \alpha\cos \beta+\sin \alpha\sin \beta)=\cos^2\alpha\cos^2\beta-\sin^2\alpha\sin^2\beta=\cos^2\alpha(1-\sin^2\beta)-(1-\cos^2\alpha)\sin^2\beta=\cos^2\alpha-\cos^2\alpha\sin^2\beta-\sin^2\beta+\sin^2\beta\cos^2\alpha=\cos^2 \alpha - \sin^2 \beta cos(α+β)cos(α−β)=(cosαcosβ−sinαsinβ)(cosαcosβ+sinαsinβ)=cos2αcos2β−sin2αsin2β=cos2α(1−sin2β)−(1−cos2α)sin2β=cos2α−cos2αsin2β−sin2β+sin2βcos2α=cos2α−sin2β

重要结论

常见辅助角结论

sin ⁡ x ± cos ⁡ x = 2 sin ⁡ ( x ± π 4 ) \sin x \pm \cos x = \sqrt{2} \sin(x \pm \dfrac{\pi}{4}) sinx±cosx=2 sin(x±4π)
cos ⁡ x ± sin ⁡ x = 2 cos ⁡ ( α ∓ π 4 ) \cos x \pm \sin x = \sqrt{2} \cos(\alpha \mp \dfrac{\pi}{4}) cosx±sinx=2 cos(α∓4π)
sin ⁡ x ± 3 cos ⁡ x = 2 sin ⁡ ( x ± π 3 ) \sin x \pm \sqrt{3} \cos x = 2 \sin(x \pm \dfrac{\pi}{3}) sinx±3 cosx=2sin(x±3π)
cos ⁡ x ± 3 sin ⁡ x = 2 cos ⁡ ( x ∓ π 3 ) \cos x \pm \sqrt{3} \sin x = 2 \cos(x \mp \dfrac{\pi}{3}) cosx±3 sinx=2cos(x∓3π)

特殊三角函数

1 5 ∘ 15^\circ 15∘ 1 8 ∘ 18^\circ 18∘ 3 6 ∘ 36^\circ 36∘
sin ⁡ 1 5 ∘ = 6 − 2 4 \sin15^{\circ}=\dfrac{\sqrt{6}-\sqrt2}{4} sin15∘=46 −2 sin ⁡ 1 8 ∘ = 5 − 1 4 \sin18^{\circ}=\dfrac{\sqrt{5}-1}{4} sin18∘=45 −1 sin ⁡ 3 6 ∘ = 10 − 2 5 4 \sin36^{\circ}=\dfrac{\sqrt{10-2\sqrt{5}}}{4} sin36∘=410−25
cos ⁡ 1 5 ∘ = 6 + 2 4 \cos15^{\circ}=\dfrac{\sqrt{6}+\sqrt{2}}{4} cos15∘=46 +2 cos ⁡ 1 8 ∘ = 10 + 2 5 4 \cos18^{\circ}=\dfrac{\sqrt{10+2\sqrt{5}}}{4} cos18∘=410+25 cos ⁡ 3 6 ∘ = 5 + 1 4 \cos36^{\circ}=\dfrac{\sqrt5+1}{4} cos36∘=45 +1
tan ⁡ 1 5 ∘ = 2 − 3 \tan15^{\circ}=2-\sqrt{3} tan15∘=2−3 tan ⁡ 1 8 ∘ = 5 − 1 10 + 2 5 \tan18^{\circ}=\dfrac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}} tan18∘=10+25 5 −1 tan ⁡ 3 6 ∘ = 10 − 2 5 5 + 1 \tan36^{\circ}=\dfrac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1} tan36∘=5 +110−25

三角形内常见结论

sin ⁡ A + sin ⁡ B + sin ⁡ C = 4 cos ⁡ A 2 cos ⁡ B 2 cos ⁡ C 2 \sin A+\sin B+\sin C=4\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2} sinA+sinB+sinC=4cos2Acos2Bcos2C
tan ⁡ A + tan ⁡ B + tan ⁡ C = tan ⁡ A ⋅ tan ⁡ B ⋅ tan ⁡ C \tan A+\tan B+\tan C=\tan A\cdot\tan B\cdot\tan C tanA+tanB+tanC=tanA⋅tanB⋅tanC(斜三角形)

相关推荐
闻缺陷则喜何志丹2 天前
【图论 组合数学】P10912 [蓝桥杯 2024 国 B] 数星星|普及+
c++·数学·蓝桥杯·图论
闻缺陷则喜何志丹2 天前
【计算几何 二分查找】P12261 [蓝桥杯 2024 国 Java B] 激光炮|普及+
c++·数学·蓝桥杯·计算几何·洛谷
闻缺陷则喜何志丹3 天前
【计算几何】P12144 [蓝桥杯 2025 省 A] 地雷阵|普及+
c++·数学·蓝桥杯·计算几何
DevOpenClub4 天前
高考教育信息智能助手 API 接口
高考
canonical_entropy5 天前
目前主流的程序语言与软件工程研究中真正严重的缺陷是什么?
后端·数学·架构
闻缺陷则喜何志丹6 天前
【计算几何 矢量】2280. 表示一个折线图的最少线段数|1681
c++·数学·计算几何·矢量
毕设源码-郭学长7 天前
【开题答辩全过程】以 高考志愿填报系统为例,包含答辩的问题和答案
高考
闻缺陷则喜何志丹7 天前
【计算几何】三角函数的和角公式、矢量旋转
c++·数学·计算几何·三角函数和角公式·矢量旋转
L***一8 天前
中专生升学路径与职业能力发展研究:基于职教高考与职业证书体系的探讨
高考