用R语言做森林生态分析?从Shannon指数到随机森林,多尺度解析群落结构与功能的核心方法

森林生态系统的结构-功能-稳定性三位一体关系构成了研究的核心框架。在微观层面,树种的空间分布格局通过莫兰指数等空间统计方法得以量化;在宏观尺度,ARMA时间序列模型则能捕捉生态系统稳定性的动态特征。这种多尺度、多维度的分析方法,使研究者能够像"生态系统的CT扫描"一般,精准解析其内在机制。

R语言生态分析工具链的成熟发展,让研究者得以突破传统研究的局限。从Shannon-Wiener多样性指数的计算,到基于结构方程模型(SEM)的因果网络构建,再到随机森林算法的预测建模,这些方法不仅提高了研究精度,更拓展了生态问题的解决维度。特别值得注意的是,空间分析方法的创新应用,使得我们可以精确刻画树木分布的聚集模式,为理解种间竞争与共生提供了量化依据。

【内容简介】:

专题一、理论

1、R语言入门

2、群落生态学理论介绍

专题二、数据获取与处理

1、全球森林生物多样性数据集介绍

介绍FIA(美国森林清查与分析)数据集、FunDivEUROPEGFBi等全球森林数据源

数据清洗:异常值、错误值、 干扰值(去除种植园、管理干扰以及树木数量少)

2、全球环境数据集介绍

多途径环境协变量的提取:气候、土壤、地形等

R语言提取环境变量/ 网站获取环境变量

专题三、生物多样性与群落组成分析

1、多样性和均匀度分析

Shannon-Wiener指数、Simpson指数、Pielou均匀度

2、物种组成与生态位分析

聚类分析(Cluster analysis)、 非度量多维尺度分析(NMDS)、主成分分析(PCA)、冗余分析(redundancy analysis, RDA)、典范对应分析(canonical correspondence analysis, CCA)

3、空间格局分析

1)空间自相关与空间点格局分析研究空间数据的相似性,特别是某一现象在空间上的分布模式,了解空间点是聚集分布、均匀分布,还是随机分布。(莫兰指数、Geary's C、Ripley's K函数)

2)景观格局指数(Patch Density、Edge Density、Landscape Shape Index等)

3)生态位宽度与重叠度分析

专题四、机器学习在群落分析中的应用

1、递归特征消除(Recursive Feature Elimination,RFE)逐步保留对模型预测最重要的特征。

2、随机森林算法构建预测模型,并通过参数优化提高预测准确性。

专题五、路径分析和结构方程模型(SEM)

结构方程模型可以量化变量之间的直接和间接关系。

专题六、群落稳定性分析

群落稳定性是指群落在面对环境变化、扰动或其他外部压力时,能够保持其结构和功能的能力。群落稳定性通常可以从以下几个方面来衡量:物种组成稳定性、生物多样性稳定性、群落功能稳定性。

1、时间序列分析:方差分析(ANOVA)检验、变异系数量化群落特征时序变化

2、自回归移动平均模型(ARMA):分析群落结构的时间序列波动

专题七、案例分析与写作指南

1、案例分析与论文模板总结

2、高质量结果可视化

相关推荐
木非哲1 天前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃1 天前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
爱吃rabbit的mq3 天前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
机器学习之心3 天前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
eWidget3 天前
随机森林原理:集成学习思想 —— Java 实现多棵决策树投票机制
java·数据库·随机森林·集成学习·金仓数据库
WHD3063 天前
苏州误删除 格式化 服务器文件 恢复
随机森林·支持向量机·深度优先·爬山算法·宽度优先·推荐算法·最小二乘法
开开心心就好8 天前
键盘改键工具免安装,自定义键位屏蔽误触
java·网络·windows·随机森林·计算机外设·电脑·excel
散峰而望8 天前
【基础算法】穷举的艺术:在可能性森林中寻找答案
开发语言·数据结构·c++·算法·随机森林·github·动态规划
uesowys8 天前
Apache Spark算法开发指导-Random forest classifier
算法·随机森林·spark
week_泽13 天前
随机森林样本权重的计算-弱学习器
学习·算法·随机森林