目录
[工具1: 用户CURD](#工具1: 用户CURD)
[工具2: 翻译](#工具2: 翻译)
[工具3: 数值计算](#工具3: 数值计算)
[工具4: 日期格式化](#工具4: 日期格式化)
[工具5: 调用第三方API](#工具5: 调用第三方API)
2、使用AiServices来组装智能体,将工具和模型结合起来
[3. 新建controller控制器进行调用返回](#3. 新建controller控制器进行调用返回)
三、AiService也可以作为其他AiService的@Tool
一、大模型与智能体对比
大模型: 优势在知识问答和文本生成;劣势在处理实时信息、精确计算或访问个性化工具时存在局限。
智能体可以让大模型调用个性化工具(智能体 ~= 工具 + 大模型)。
比如,大模型可以英文翻译; 而智能体可以英文翻译---》调用个性化工具/专业工具进行润色---》保存到数据库等一些列自主规划、个性化规划的应用

二、智能体示例
官网:https://docs.langchain4j.dev/intro/
https://docs.langchain4j.dev/tutorials/spring-boot-integration/
LangChain4j实现智能体中:
- 一个agent可以包含若干@AiService;
- 一个@AiServicek可以包含若干@Tool;
- 一个@Tool可以若干工具类操作,比如CURD、调用第三方API、调用http接口,与缓存redis/HDFS等等交互;
示意图如下:

注意: AiService也可以作为其他AiService的@Tool
步骤:
- 定义工具(Tools)。工具可以是任何东西:网页搜索、外部API调用、或执行一段特定代码等
- 使用AiServices来组装智能体,将工具和模型结合起来。
注,AiServices原理:
http://www.cppcns.com/ruanjian/java/718092.html
- 新建controller控制器进行调用返回
1、定义工具tools
工具1: 用户CURD
java
package com.ai.LangChain4j.agent;
import dev.langchain4j.agent.tool.Tool;
import dev.langchain4j.agent.tool.P;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Component;
import java.util.UUID;
import java.util.concurrent.CompletableFuture;
@Component
public class AiUserTool {
@Autowired
private UserService userService;
//通过@P注解为参数添加描述信息
@Tool("新增用户服务")
public void addUser(@P("用户名称") String name, @P("用户年龄") String age, @P("用户性别") String sex) {
User user = new User(null, name, age, sex);
userService.addUser(user);
}
@Tool("根据用户名查询用户完整信息")
public User findUser(@P("用户名称") String name) {
return userService.findUser(name);
}
@Async
@Tool("异步查询")
public CompletableFuture<User> getUserAsync(String userId) {
return CompletableFuture.supplyAsync(() ->
userService.findById(userId)
);
}
}
工具2: 翻译
java
package com.ai.LangChain4j;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.spring.AiService;
@AiService
public interface TranslatorService {
@SystemMessage("你是一位翻译助手")
@UserMessage("请将以下句子翻译成英文:{{message}}") // 模板化提示
String chat(String message);
}
工具3: 数值计算
java
@Component
public class MyCalculatorTool {
//@Tool注解定义可被LLM调用的工具方法,自动将工具方法注册到LangChain4J服务中
@Tool("用于计算两个数字的加法、减法、乘法和除法")
public double calculate(double a, double b, String operator) {
switch (operator) {
case "+": return a + b;
case "-": return a - b;
case "*": return a * b;
case "/":
if (b == 0) throw new IllegalArgumentException("除数不能为零");
return a / b;
default: throw new IllegalArgumentException("不支持的操作符: " + operator);
}
}
}
工具4: 日期格式化
java
package com.ai.LangChain4j.agent;
import dev.langchain4j.agent.tool.Tool;
import org.springframework.stereotype.Component;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
@Component
public class DateTimeTool {
@Tool("获取当前时间,返回格式为 yyyy-MM-dd HH:mm:ss")
public String getCurrentDateTime() {
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
String time = LocalDateTime.now().format(formatter);
// log.info("调用获取时间工具,返回: {}", time);
return time;
}
}
工具5: 调用第三方API
java
package com.ai.LangChain4j.agent;
import org.springframework.stereotype.Component;
import dev.langchain4j.agent.tool.Tool;
import org.springframework.web.client.RestTemplate;
import java.util.Map;
@Component
public class MyWebSearchTool {
private final RestTemplate restTemplate = new RestTemplate();
@Tool("在互联网上搜索实时信息,可以调用公开平台的api查询信息,例如当前新闻、天气等")
public String searchWeb(String query) {
// 为了演示,我们返回一个固定的字符串,实际中应该调用真实的搜索API
return "根据搜索查询'" + query + "',这里是模拟的搜索结果:xxxxxxxxx";
}
}
2、使用AiServices来组装智能体,将工具和模型结合起来
定义一个AiService:
java
package com.ai.LangChain4j.agent;
import dev.langchain4j.service.spring.AiService;
@AiService
public interface MyAssistantService {
String chat(String userMessage);
}
.tools(calculatorTool, webSearchTool, aiUserTool,bookingTools) //给 AI Service 绑定工具:
使用AiServices的话,就设置tools就行了,之后它的实现类自动管理tool的调用
注: 这里可以绑定若干需要的工具
java
package com.ai.LangChain4j.agent;
import dev.langchain4j.memory.ChatMemory;
import dev.langchain4j.memory.chat.MessageWindowChatMemory;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import dev.langchain4j.memory.chat.TokenWindowChatMemory;
import java.time.Duration;
@Configuration
public class MyAgentConfiguration {
//配置带工具的AI服务
@Bean
public MyAssistantService assistant(MyCalculatorTool calculatorTool, MyWebSearchTool webSearchTool, AiUserTool aiUserTool,BookingTools bookingTools) {
ChatMemory chatMemory = MessageWindowChatMemory.withMaxMessages(20);
return AiServices.builder(MyAssistantService.class)
.chatModel(OpenAiChatModel.builder()
.baseUrl(baseUrl)
.apiKey(apiKey)
.modelName(modelName) //使用的模型名称
// .maxTokens(1000) // 单次回答的最大token数
.logRequests(logRequests) // 记录请求日志
.logResponses(logResponses) // 记录响应日志
.returnThinking(false) // 是否返回AI的思考过程
// .customHeaders(map)
// 超时配置优化
.timeout(Duration.ofMinutes(5)) // 长文本处理设置较长超时
.temperature(0.1) // 降低随机性,使工具调用更稳定(0-1,越高越随机)
.build())
.tools(calculatorTool, webSearchTool, aiUserTool,bookingTools) //给 AI Service 绑定工具:
.chatMemory(chatMemory)//记忆功能概述 记忆对话功能允许AI记住之前的对话内容,实现上下文连贯的对话体验。LangChain4j提供了多种记忆存储方式,包括内存存储、Redis存储等。
.build();
}
@Value("${langchain4j.open-ai.chat-model.api-key}")
private String apiKey;
@Value("${langchain4j.open-ai.chat-model.base-url}")
private String baseUrl;
@Value("${langchain4j.open-ai.chat-model.model-name}")
private String modelName;
@Value("${langchain4j.open-ai.chat-model.log-requests}")
private Boolean logRequests;
@Value("${langchain4j.open-ai.chat-model.log-responses}")
private Boolean logResponses;
}
3. 新建controller控制器进行调用返回
java
package com.ai.LangChain4j.agent;
import com.ai.LangChain4j.CalculatorTool;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
// 参考 https://developer.aliyun.com/article/1683612
@RestController
@RequestMapping("/agent")
public class MyAgentController {
@Autowired
private MyAssistantService myAssistantService;
@Autowired
private ChatModel chatModel;
/**
* 定义工具、组装智能体、集成Spring Boot,并添加记忆功能
* @param message
* @return
*/
@GetMapping("/chat")
public String assistantchat(String message) {
return myAssistantService.chat(message);
}
}
三、AiService也可以作为其他AiService的@Tool
java
interface RouterAgent {
@dev.langchain4j.service.UserMessage("""
Analyze the following user request and categorize it as 'legal', 'medical' or 'technical',
then forward the request as it is to the corresponding expert provided as a tool.
Finally return the answer that you received from the expert without any modification.
The user request is: '{{it}}'.
""")
String askToExpert(String request);
}
interface MedicalExpert {
@dev.langchain4j.service.UserMessage("""
You are a medical expert.
Analyze the following user request under a medical point of view and provide the best possible answer.
The user request is {{it}}.
""")
@Tool("A medical expert")
String medicalRequest(String request);
}
interface LegalExpert {
@dev.langchain4j.service.UserMessage("""
You are a legal expert.
Analyze the following user request under a legal point of view and provide the best possible answer.
The user request is {{it}}.
""")
@Tool("A legal expert")
String legalRequest(String request);
}
interface TechnicalExpert {
@dev.langchain4j.service.UserMessage("""
You are a technical expert.
Analyze the following user request under a technical point of view and provide the best possible answer.
The user request is {{it}}.
""")
@Tool("A technical expert")
String technicalRequest(String request);
}
java
MedicalExpert medicalExpert = AiServices.builder(MedicalExpert.class)
.chatModel(model)
.build();
LegalExpert legalExpert = AiServices.builder(LegalExpert.class)
.chatModel(model)
.build();
TechnicalExpert technicalExpert = AiServices.builder(TechnicalExpert.class)
.chatModel(model)
.build();
RouterAgent routerAgent = AiServices.builder(RouterAgent.class)
.chatModel(model)
.tools(medicalExpert, legalExpert, technicalExpert)
.build();
routerAgent.askToExpert("I broke my leg what should I do");
注意: RouterAgent可以使用3个AiService作为tool
注:agent不能使用 chat memory
四、访问执行过的Tools
需要使用Result:
java
interface Assistant {
Result<String> chat(String userMessage);
}
Result<String> result = assistant.chat("Cancel my booking 123-456");
String answer = result.content();
List<ToolExecution> toolExecutions = result.toolExecutions();
ToolExecution toolExecution = toolExecutions.get(0);
ToolExecutionRequest request = toolExecution.request();
String result = toolExecution.result(); // tool execution result as text
Object resultObject = toolExecution.resultObject(); // actual value returned by the tool
流式输出场景下:
interface Assistant {
TokenStream chat(String message);
}
TokenStream tokenStream = assistant.chat("Cancel my booking");
tokenStream
.onToolExecuted((ToolExecution toolExecution) -> System.out.println(toolExecution))
.onPartialResponse(...)
.onCompleteResponse(...)
.onError(...)
.start();
五、处理Tool异常
1、处理tool参数异常
方法一:抛出异常
java
Assistant assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(tools)
.toolArgumentsErrorHandler((error, errorContext) -> { throw MyCustomException(error); })
.build();
try {
assistant.chat(...);
} catch (MyCustomException e) {
// handle e
}
方法二:给LLM返回一个text消息
java
Assistant assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(tools)
.toolArgumentsErrorHandler((error, errorContext) -> ToolErrorHandlerResult.text("Something is wrong with tool arguments: " + error.getMessage()))
.build();
2、处理tool运行时异常
注: 同上,也可以抛出异常或给LLM返回一个text消息
java
Assistant assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(tools)
.toolExecutionErrorHandler((error, errorContext) -> ToolErrorHandlerResult.text("Something is wrong with tool execution: " + error.getMessage()))
.build();