多模态多Agent智能助手系统完整方案汇总

🧠 一、系统定位

一个具备"感知-思考-执行-创造"能力的通用智能体,可作为:

  • 个人效率助手
  • 内容创作伙伴
  • 智能旅行顾问
  • 多媒体交互入口

🏗️ 二、整体架构(Supervisor + Specialist Agents)

graph LR A[用户输入] --> B{Router Agent} B -->|文字闲聊| C[Chat Agent] B -->|旅游请求| D[Travel Planner Agent] B -->|写博文| E[Blog Writer Agent] B -->|上传图片/视频| F[Media Analyzer Agent] B -->|"帮我画..."| G[Image Generator Agent] F -->|识别出巴黎铁塔| D E -->|需要插图| G G --> H[输出图片] D & E & C & H --> I[统一回复给用户]

📦 三、核心功能模块

模块 功能说明 技术实现
1. Router Agent(主管) 判断用户意图:聊天 / 旅游 / 博文 / 图像理解 / 图像生成 LLM + 规则关键词 + 文件检测
2. Chat Agent 日常对话、问答、上下文记忆 LLM(本地或云端)
3. Travel Planner Agent 根据目的地、预算、偏好生成7日行程表 调用搜索/天气/地图API + 行程模板
4. Blog Writer Agent 按主题、风格(科技/情感/新闻)、字数生成文章 Prompt Engineering + RAG(可选)
5. Media Analyzer Agent 新增 • 识别图片内容(地点、物体、风格) • 分析视频关键帧,提取摘要 LLaVA / Qwen-VL / GPT-4o / Gemini
6. Image Generator Agent 新增 • 根据文本生成插图(如"樱花下的京都") • 支持风格控制(写实/插画/动漫) Flux (Ollama) / Stable Diffusion / DALL·E 3
7. Memory Module 记住用户偏好(如"不喜欢爬山"、"喜欢简约风") 向量数据库(Chroma)+ 偏好提取Agent

📥📤 四、多模态输入输出支持

输入支持

  • ✅ 纯文本(默认)
  • ✅ 上传 图片(JPG/PNG)→ 自动触发图像理解
  • ✅ 上传 视频(MP4/MOV)→ 自动抽帧并分析内容

输出支持

  • ✅ 文本回复(Markdown格式)
  • 生成图片(保存为文件,前端展示)
  • ✅ 导出 PDF/Word(含图文混排,可选)

示例场景:

  • 用户上传一张"冰岛极光"照片 → 系统识别后问:"需要我为您规划一次冰岛极光之旅吗?"
  • 用户说:"写一篇关于AI未来的博文,配一张科技感插图" → 先生成文章,再生成插图

⚙️ 五、推荐技术栈(灵活组合)

组件 本地方案(免费) 云方案(强大)
框架 LangGraph(推荐) / CrewAI LangGraph + LangSmith
大模型 LLaMA 3.2, Qwen-Max(Ollama) GPT-4o, Claude 3.5
多模态理解 LLaVA-1.6, Qwen-VL GPT-4o Vision, Gemini 1.5
图像生成 Flux (Ollama), SDXL DALL·E 3, Midjourney API
前端 Streamlit(快速) / Gradio FastAPI + React(生产)
存储 SQLite + Local Files Redis + S3 + Chroma Cloud

💡 混合部署建议:日常对话用本地模型,关键任务(如高清图生成)调用云API


🗂️ 六、项目结构(清晰可维护)

plain 复制代码
multimodal-agent/
├── agents/
│   ├── router.py
│   ├── chat_agent.py
│   ├── travel_agent.py
│   ├── blog_agent.py
│   ├── media_analyzer.py      ← 新增
│   └── image_generator.py     ← 新增
├── tools/
│   ├── web_search.py
│   ├── weather_api.py
│   ├── vision_model.py        # 封装LLaVA/GPT-4V
│   └── image_gen_api.py       # 封装Flux/DALL·E
├── memory/
│   └── user_preference_store.py
├── uploads/                   # 用户上传的图片/视频
├── outputs/                   # 生成的图片、PDF等
├── graph.py                   # LangGraph 编排
└── app.py                     # Streamlit/FastAPI 入口

🖥️ 七、用户交互流程示例

  1. 用户:上传一张"京都寺庙"照片
  2. 系统(Media Analyzer):识别出"日本京都清水寺,春季,游客较多"
  3. 系统(Router):判断可能需旅游规划
  4. 系统:回复:"这是京都清水寺!需要我为您规划一次日本关西文化之旅吗?(预算/天数/偏好?)"
  5. 用户:"5000元,5天,喜欢美食和古建筑"
  6. 系统(Travel Agent):生成行程表 + 调用 Image Generator 生成"京都美食地图"插图
  7. 输出:Markdown行程 + 插图,支持一键保存

🚀 八、部署与扩展建议

  • 快速验证 :用 Ollama + Streamlit + LangGraph 本地跑通(1天内)
  • 生产部署
    • 后端:FastAPI + LangGraph + Redis(会话管理)
    • 前端:Web聊天界面 + 文件上传组件
    • 监控:LangSmith 追踪每步Agent决策
  • 未来扩展
    • 语音输入/输出(Whisper + TTS)
    • 多人协作(共享行程/文章草稿)
    • 插件市场(接入高德地图、小红书API等)

✅ 总结:你的系统 = 全能数字伙伴

能力维度 实现效果
听得懂 理解复杂指令、上下文、情绪
看得见 识图辨物、看懂视频内容
想得清 分工协作、避免幻觉、引用事实
做得好 生成行程、撰写文章、创作插图
记得住 记住你是谁、你喜欢什么
相关推荐
沛沛老爹5 小时前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
AI浩6 小时前
【Block总结】门控注意力机制,最新注意力机制|即插即用|最佳论文奖
人工智能·语言模型·自然语言处理
大模型教程9 小时前
14天速成LLM高手!大佬开源学习笔记,GitHub狂揽700星
程序员·llm·agent
小徐Chao努力9 小时前
Spring AI Alibaba A2A 使用指南
java·人工智能·spring boot·spring·spring cloud·agent·a2a
阿杰学AI9 小时前
AI核心知识57——大语言模型之MoE(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai-native·moe·混合专家模型
AI大模型9 小时前
大模型相关术语和框架总结|LLM、MCP、Prompt、RAG、vLLM、Token、数据蒸馏
程序员·llm·agent
用户47949283569159 小时前
拆包、立边界、可发布:Gemini CLI 的 Monorepo 设计我学到了什么
aigc·agent·ai编程
AI大模型10 小时前
OpenAI官方出品 : 从0到1构建AI Agent实战指南, 解锁智能自动化新范式
程序员·llm·agent
阿杰学AI10 小时前
AI核心知识56——大语言模型之ToT(简洁且通俗易懂版)
人工智能·ai·语言模型·提示工程·tot·pe·思维树