one-hot编码

我来详细介绍一下 one-hot 编码(独热编码)。

什么是 One-Hot 编码?

One-Hot 编码是一种将分类变量 转换为二进制向量的技术,其中每个类别都表示为一个二进制向量,只有一个元素为1("热"),其余都为0。

工作原理

假设有一个颜色类别变量:["红", "绿", "蓝"]

原始数据:

text

复制代码
红
绿
蓝
红

One-Hot 编码后:

text

复制代码
红 → [1, 0, 0]
绿 → [0, 1, 0]
蓝 → [0, 0, 1]
红 → [1, 0, 0]

为什么要使用 One-Hot 编码?

  1. 消除类别间的序数关系:避免机器学习模型误以为类别之间有大小顺序关系

  2. 兼容算法:许多机器学习算法(如线性回归、神经网络)需要数值输入

  3. 保持类别独立性:每个类别都成为独立的特征维度

在 Python 中的实现

方法1:使用 pandas

python

复制代码
import pandas as pd

# 创建示例数据
df = pd.DataFrame({'颜色': ['红', '绿', '蓝', '红', '绿']})

# 进行 one-hot 编码
one_hot = pd.get_dummies(df['颜色'], prefix='颜色')
print(one_hot)

方法2:使用 scikit-learn

python

复制代码
from sklearn.preprocessing import OneHotEncoder
import numpy as np

# 创建示例数据
data = np.array(['红', '绿', '蓝', '红', '绿']).reshape(-1, 1)

# 创建编码器
encoder = OneHotEncoder(sparse_output=False)

# 拟合和转换
one_hot_encoded = encoder.fit_transform(data)
print(one_hot_encoded)

One-Hot 编码的优缺点

优点:

  • ✅ 简单直观,易于实现

  • ✅ 消除了类别间的虚假序数关系

  • ✅ 与大多数机器学习算法兼容

缺点:

  • 维度灾难:如果类别很多,会创建大量稀疏特征

  • 稀疏矩阵:存储效率低

  • ❌ 丢失了类别之间的关系信息(如果有的话)

替代方案

  1. 标签编码(Label Encoding):将类别转换为数字(0, 1, 2...)

  2. 目标编码(Target Encoding):用目标变量的统计量编码

  3. 二进制编码(Binary Encoding):将类别先转换为数字,再转换为二进制

实用建议

  • 当类别数量较少(如<15)时,使用 One-Hot 编码

  • 当类别数量很多时,考虑其他编码方式或特征选择

  • 在神经网络中,One-Hot 编码通常用于输入层

  • 对于有序类别,可以考虑使用有序编码而不是 One-Hot

示例:完整代码

python

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# 示例数据
data = pd.DataFrame({
    '颜色': ['红', '绿', '蓝', '红', '绿', '蓝'],
    '尺寸': ['大', '中', '小', '中', '大', '小'],
    '价格': [100, 200, 150, 120, 180, 160]
})

# One-Hot 编码分类变量
data_encoded = pd.get_dummies(data, columns=['颜色', '尺寸'])

print("原始数据:")
print(data)
print("\nOne-Hot 编码后:")
print(data_encoded)

One-Hot 编码是数据预处理中的基础且重要的技术,特别适用于处理名义型分类变量。

相关推荐
名为沙丁鱼的猫7294 分钟前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander7 分钟前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu18 分钟前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑26 分钟前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体
独自归家的兔28 分钟前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
一个处女座的程序猿28 分钟前
AI:解读Sam Altman与多位 AI 构建者对话—构建可落地的 AI—剖析 OpenAI Town Hall 与给创业者、产品/工程/安全团队的实用指南
人工智能
依依yyy28 分钟前
沪深300指数收益率波动性分析与预测——基于ARMA-GARCH模型
人工智能·算法·机器学习
海域云-罗鹏38 分钟前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
冬奇Lab41 分钟前
深入理解 Claude Code:架构、上下文与工具系统
人工智能·ai编程
Up九五小庞1 小时前
本地部署 + Docker 容器化实战:中医舌诊 AI 项目 TongueDiagnosis 部署全记录-九五小庞
人工智能