one-hot编码

我来详细介绍一下 one-hot 编码(独热编码)。

什么是 One-Hot 编码?

One-Hot 编码是一种将分类变量 转换为二进制向量的技术,其中每个类别都表示为一个二进制向量,只有一个元素为1("热"),其余都为0。

工作原理

假设有一个颜色类别变量:["红", "绿", "蓝"]

原始数据:

text

复制代码
红
绿
蓝
红

One-Hot 编码后:

text

复制代码
红 → [1, 0, 0]
绿 → [0, 1, 0]
蓝 → [0, 0, 1]
红 → [1, 0, 0]

为什么要使用 One-Hot 编码?

  1. 消除类别间的序数关系:避免机器学习模型误以为类别之间有大小顺序关系

  2. 兼容算法:许多机器学习算法(如线性回归、神经网络)需要数值输入

  3. 保持类别独立性:每个类别都成为独立的特征维度

在 Python 中的实现

方法1:使用 pandas

python

复制代码
import pandas as pd

# 创建示例数据
df = pd.DataFrame({'颜色': ['红', '绿', '蓝', '红', '绿']})

# 进行 one-hot 编码
one_hot = pd.get_dummies(df['颜色'], prefix='颜色')
print(one_hot)

方法2:使用 scikit-learn

python

复制代码
from sklearn.preprocessing import OneHotEncoder
import numpy as np

# 创建示例数据
data = np.array(['红', '绿', '蓝', '红', '绿']).reshape(-1, 1)

# 创建编码器
encoder = OneHotEncoder(sparse_output=False)

# 拟合和转换
one_hot_encoded = encoder.fit_transform(data)
print(one_hot_encoded)

One-Hot 编码的优缺点

优点:

  • ✅ 简单直观,易于实现

  • ✅ 消除了类别间的虚假序数关系

  • ✅ 与大多数机器学习算法兼容

缺点:

  • 维度灾难:如果类别很多,会创建大量稀疏特征

  • 稀疏矩阵:存储效率低

  • ❌ 丢失了类别之间的关系信息(如果有的话)

替代方案

  1. 标签编码(Label Encoding):将类别转换为数字(0, 1, 2...)

  2. 目标编码(Target Encoding):用目标变量的统计量编码

  3. 二进制编码(Binary Encoding):将类别先转换为数字,再转换为二进制

实用建议

  • 当类别数量较少(如<15)时,使用 One-Hot 编码

  • 当类别数量很多时,考虑其他编码方式或特征选择

  • 在神经网络中,One-Hot 编码通常用于输入层

  • 对于有序类别,可以考虑使用有序编码而不是 One-Hot

示例:完整代码

python

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# 示例数据
data = pd.DataFrame({
    '颜色': ['红', '绿', '蓝', '红', '绿', '蓝'],
    '尺寸': ['大', '中', '小', '中', '大', '小'],
    '价格': [100, 200, 150, 120, 180, 160]
})

# One-Hot 编码分类变量
data_encoded = pd.get_dummies(data, columns=['颜色', '尺寸'])

print("原始数据:")
print(data)
print("\nOne-Hot 编码后:")
print(data_encoded)

One-Hot 编码是数据预处理中的基础且重要的技术,特别适用于处理名义型分类变量。

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫5 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1