基于Python 实现亚马逊销售数据可视化

python 复制代码
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.linear_model import LinearRegression
import xgboost as xgb
from tabulate import tabulate

# 显示设置
sns.set(style='whitegrid', palette='muted', color_codes=True)

# 预测建模
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc
from sklearn.ensemble import RandomForestClassifier
from sklearn.inspection import permutation_importance

# 随机安装/随机固定
import random
random.seed(42)
np.random.seed(42)

# 随机性的确定性、统计学知识及警告信息
import scipy.stats as stats
import warnings
warnings.filterwarnings('ignore')
python 复制代码
df = pd.read_csv("/Amazon.csv")
df.head()

|---|------------|------------|------------|---------------|-----------|---------------------|-----------------|------------|----------|-----------|----------|-------|--------------|-------------|------------------|-------------|-------------|-------|---------------|-----------|
| | OrderID | OrderDate | CustomerID | CustomerName | ProductID | ProductName | Category | Brand | Quantity | UnitPrice | Discount | Tax | ShippingCost | TotalAmount | PaymentMethod | OrderStatus | City | State | Country | SellerID |
| 0 | ORD0000001 | 2023-01-31 | CUST001504 | Vihaan Sharma | P00014 | Drone Mini | Books | BrightLux | 3 | 106.59 | 0.00 | 0.00 | 0.09 | 319.86 | Debit Card | Delivered | Washington | DC | India | SELL01967 |
| 1 | ORD0000002 | 2023-12-30 | CUST000178 | Pooja Kumar | P00040 | Microphone | Home & Kitchen | UrbanStyle | 1 | 251.37 | 0.05 | 19.10 | 1.74 | 259.64 | Amazon Pay | Delivered | Fort Worth | TX | United States | SELL01298 |
| 2 | ORD0000003 | 2022-05-10 | CUST047516 | Sneha Singh | P00044 | Power Bank 20000mAh | Clothing | UrbanStyle | 3 | 35.03 | 0.10 | 7.57 | 5.91 | 108.06 | Debit Card | Delivered | Austin | TX | United States | SELL00908 |
| 3 | ORD0000004 | 2023-07-18 | CUST030059 | Vihaan Reddy | P00041 | Webcam Full HD | Home & Kitchen | Zenith | 5 | 33.58 | 0.15 | 11.42 | 5.53 | 159.66 | Cash on Delivery | Delivered | Charlotte | NC | India | SELL01164 |
| 4 | ORD0000005 | 2023-02-04 | CUST048677 | Aditya Kapoor | P00029 | T-Shirt | Clothing | KiddoFun | 2 | 515.64 | 0.25 | 38.67 | 9.23 | 821.36 | Credit Card | Cancelled | San Antonio | TX | Canada | SELL01411 |

python 复制代码
df.tail()

|-------|------------|------------|------------|---------------|-----------|-------------------|--------------------|-----------|----------|-----------|----------|--------|--------------|-------------|------------------|-------------|--------------|-------|---------------|-----------|
| | OrderID | OrderDate | CustomerID | CustomerName | ProductID | ProductName | Category | Brand | Quantity | UnitPrice | Discount | Tax | ShippingCost | TotalAmount | PaymentMethod | OrderStatus | City | State | Country | SellerID |
| 99995 | ORD0099996 | 2023-03-07 | CUST001356 | Karan Joshi | P00047 | Memory Card 128GB | Electronics | Apex | 2 | 492.34 | 0.00 | 78.77 | 2.75 | 1066.20 | UPI | Delivered | Jacksonville | FL | India | SELL00041 |
| 99996 | ORD0099997 | 2021-11-24 | CUST031254 | Sunita Kapoor | P00046 | Car Charger | Sports & Outdoors | Apex | 5 | 449.30 | 0.00 | 179.72 | 6.07 | 2432.29 | Credit Card | Delivered | San Jose | CA | United States | SELL01449 |
| 99997 | ORD0099998 | 2023-04-29 | CUST012579 | Aman Gupta | P00030 | Dress Shirt | Sports & Outdoors | BrightLux | 4 | 232.40 | 0.00 | 74.37 | 12.43 | 1016.40 | Cash on Delivery | Delivered | Indianapolis | IN | United States | SELL00028 |
| 99998 | ORD0099999 | 2021-11-01 | CUST026243 | Simran Gupta | P00046 | Car Charger | Sports & Outdoors | HomeEase | 1 | 294.05 | 0.00 | 23.52 | 13.09 | 330.66 | Debit Card | Delivered | Charlotte | NC | United States | SELL00324 |
| 99999 | ORD0100000 | 2021-12-04 | CUST029492 | Sunita Reddy | P00019 | LED Desk Lamp | Home & Kitchen | CoreTech | 5 | 166.70 | 0.05 | 63.35 | 3.34 | 858.52 | Debit Card | Delivered | New York | NY | United States | SELL00761 |

python 复制代码
df.describe()

|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| | Quantity | UnitPrice | Discount | Tax | ShippingCost | TotalAmount |
| count | 100000.000000 | 100000.000000 | 100000.000000 | 100000.000000 | 100000.000000 | 100000.000000 |
| mean | 3.001400 | 302.905748 | 0.074226 | 68.468902 | 7.406660 | 918.256479 |
| std | 1.413548 | 171.840797 | 0.082583 | 74.131180 | 4.324057 | 724.508332 |
| min | 1.000000 | 5.000000 | 0.000000 | 0.000000 | 0.000000 | 4.270000 |
| 25% | 2.000000 | 154.190000 | 0.000000 | 15.920000 | 3.680000 | 340.890000 |
| 50% | 3.000000 | 303.070000 | 0.050000 | 45.250000 | 7.300000 | 714.315000 |
| 75% | 4.000000 | 451.500000 | 0.100000 | 96.060000 | 11.150000 | 1349.765000 |
| max | 5.000000 | 599.990000 | 0.300000 | 538.460000 | 15.000000 | 3534.980000 |

python 复制代码
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
python 复制代码
plt.figure(figsize=(10,6))
sns.heatmap(df.isnull(), cbar=False, cmap="viridis")
plt.title("Missing Values Heatmap")
plt.show()
python 复制代码
numeric_cols = df.select_dtypes(include=['number']).columns

# رسم التوزيع لكل عمود رقمي
for col in numeric_cols:
    sns.histplot(x=col, data=df, kde=True)
    plt.show()
python 复制代码
for col in df:
    if df[col].dtype == 'O':
        sns.countplot(x=col,data=df)
        plt.show()
相关推荐
汤姆yu几秒前
基于深度学习的火焰烟雾识别系统
人工智能·深度学习·目标跟踪
灯下夜无眠1 分钟前
sklearn中fit、transform、fit_transform用法详解
人工智能·python·sklearn
张彦峰ZYF4 分钟前
多模态大模型、混合专家模型与云端协同架构
人工智能·计算机视觉·多模态大模型·混合专家架构·大小模型协同架构
丝斯20117 分钟前
AI学习笔记整理(43)——NLP之大规模预训练模型BERT
人工智能·学习·自然语言处理
yong99908 分钟前
信号分形维数计算方法与MATLAB实现
开发语言·人工智能·matlab
爱吃大芒果10 分钟前
openJiuwen(Windows端)大模型添加及AI Agent创建教程
人工智能·ubuntu·openjiuwen
工藤学编程11 分钟前
零基础学AI大模型之个人助理智能体之tool_calling_agent实战
人工智能·langchain
WZgold14112 分钟前
黄金再创新高!2026 年金价走势预测
大数据·人工智能·经验分享·区块链
雷焰财经12 分钟前
生成式AI走进金融核心系统——效率革命还是风险放大器?
人工智能