Conda env & python 的包管理器

Python 有多种 包管理器与环境管理器 的工具,比如 venv, conda, uv 等等

1,如何看 conda的当前 env

2, python 的包 管理器的比较

一、核心对比表格(一目了然)

特性维度 pip(官方默认) conda(多语言 + 环境) poetry(项目打包 + 依赖锁定) pipenv(pip+virtualenv 整合) uv(新一代高性能)
核心定位 Python 官方基础包管理器 多语言包 + 环境管理器(跨语言) 项目依赖管理 + 打包发布工具 简化版 "pip+virtualenv" 整合工具 高性能 pip 替代(快速安装 / 解析)
管理范围 仅 Python 包 Python/R/C++ 等多语言包 仅 Python 包 仅 Python 包 仅 Python 包
环境管理 无(需搭配 virtualenv/venv) 原生支持(核心功能,环境隔离) 原生支持(自动创建虚拟环境) 原生支持(自动关联环境) 无(需搭配 venv/conda)
依赖解决 仅安装指定包,不主动解决冲突 自动分析并解决跨语言依赖冲突 严格依赖锁定(生成 poetry.lock) 依赖锁定(Pipfile.lock) 极速依赖解析(比 pip 快 10-100 倍)
依赖文件 requirements.txt(松散) environment.yml(支持版本约束) pyproject.toml + poetry.lock Pipfile + Pipfile.lock 兼容 requirements.txt/pyproject.toml
打包发布 需配合 setuptools(繁琐) 不支持打包发布 原生支持(构建 wheel/sdist,上传 PyPI) 支持但体验一般 仅依赖管理,不支持打包
跨平台兼容性 强(但部分包需系统编译) 极强(预编译包,无需编译)
适用场景 简单项目、快速安装包、新手入门 数据科学、AI 开发、多语言项目 Python 项目开发 + 打包发布 中小型项目、想简化 pip+venv 流程 追求极致速度的项目、大型依赖项目
优点 轻量、官方默认、生态最广 解决复杂依赖冲突、多版本切换 依赖锁定严谨、打包发布一体化 简化环境 + 依赖管理、上手简单 速度极快、兼容现有工作流
缺点 无环境管理、依赖冲突需手动处理 包体积大、非 Python 包支持有限 学习成本略高、部分老包兼容差 依赖解析速度慢、维护力度下降 无环境管理、功能单一(仅包管理)

3,总结

大多数开发者的最终组合是:conda(环境管理)+ uv(包管理)poetry(依赖 + 打包),兼顾效率和规范性。

相关推荐
寻梦csdn2 天前
pycharm+miniconda兼容问题
ide·python·pycharm·conda
hampeter2 天前
【填坑指南】Trae/VS Code 远程连接 Ubuntu,终端总是自动激活特定的 Conda 环境?三招教你彻底解决!
linux·ubuntu·conda·trae
403240732 天前
【Jetson开发避坑】虚拟环境(Conda/Venv)调用系统底层OpenCV与TensorRT的终极指南
人工智能·opencv·conda
qinyia3 天前
如何彻底卸载macOS上的conda并清理环境变量配置
macos·conda
weixin_421585014 天前
Mamba与Conda
conda
qq_273900234 天前
Apptainer 将 Ubuntu 本地 Conda 环境打包为 Singularity(SIF)镜像
linux·ubuntu·conda
肆意飞扬5 天前
Python篇:使用conda、pip的一些命令记录
python·conda·pip
没事儿写两篇7 天前
Anaconda 的开源替代软件 Miniforge
开源·conda·miniconda·miniforge
次旅行的库7 天前
不能将windows本地虚拟环境打包到实验室服务器
linux·windows·conda
云和数据.ChenGuang9 天前
python对接mysql和模型类的故障
数据库·python·mysql·oracle·conda·virtualenv