Transformer 大语言模型(LLM)基石 - 输出层(Output Layer)详解以及算法实现

锋哥原创的Transformer 大语言模型(LLM)基石视频教程:

https://www.bilibili.com/video/BV1X92pBqEhV

课程介绍

本课程主要讲解Transformer简介,Transformer架构介绍,Transformer架构详解,包括输入层,位置编码,多头注意力机制,前馈神经网络,编码器层,解码器层,输出层,以及Transformer Pytorch2内置实现,Transformer基于PyTorch2手写实现等知识。

Transformer 大语言模型(LLM)基石 - 输出层(Output Layer)详解以及算法实现

解码器的最终输出会传递给输出层,通常是一个全连接层,它将解码器的输出映射到目标词汇表的维度,生成每个时间步的预测词汇。

  • 功能:生成序列的预测输出,例如在翻译任务中,输出为目标语言的词汇。

  • 结构:这个层的输出维度为[batch_size, seq_len, vocab_size],表示每个词的位置的输出分布。

在输出层的最后,通常会使用Softmax函数来将模型的输出转换为概率分布,然后选择概率最高的词作为模型的预测输出。

  • 功能:根据输出分布生成最终的预测结果。

  • 结构:Softmax将每个位置的输出转换为一个概率分布,并选择概率最高的词作为最终的输出。

代码实现:

复制代码
# 输出层
class OutputLayer(nn.Module):
​
    def __init__(self, d_model, vocab_size):
        super().__init__()
        self.d_model = d_model  # 词嵌入维度大小
        self.vocab_size = vocab_size  # 词表大小
        self.linear = nn.Linear(d_model, vocab_size)  # 线性层
​
    def forward(self, x):
        """
        前向传播
        对输入x通过线性层变换后,应用log_softmax函数处理,最后返回处理结果。具体来说:
        self.linear(x) - 将输入x通过线性变换
        F.log_softmax() - 对线性变换结果应用对数softmax操作
        dim=-1 - 指定在最后一个维度上进行softmax计算
        :param x: 输入张量 [batch_size, seq_len, d_model]
        :return: 输出张量 [batch_size, seq_len, vocab_size]
        """
        return F.log_softmax(self.linear(x), dim=-1)  # 对输出张量进行softmax
​
​
# 测试输出层
def test_output_layer():
    decoder_result = test_decoder()
    # 实例化输出层对象
    output_layer = OutputLayer(d_model=512, vocab_size=2000)
    output_result = output_layer(decoder_result)
    print('output_result.shape:', output_result.shape)
​
​
if __name__ == '__main__':
    # test_encoder()
    # test_decoder()
    test_output_layer()

运行输出:

相关推荐
聆风吟º12 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子12 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能13 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能57713 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h13 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切13 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
学电子她就能回来吗15 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_15 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七16 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang16 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习