cv.drawChessboardCorners 是 OpenCV 中用于可视化棋盘格角点检测

cv.drawChessboardCorners 是 OpenCV 中用于可视化棋盘格角点检测

cv.drawChessboardCorners 是 OpenCV 中用于可视化棋盘格角点检测结果的核心函数,常配合 cv.findChessboardCorners 使用,主要用于相机标定、立体视觉等场景的结果验证。

函数基本信息

函数原型(Python 版)

cv.drawChessboardCorners(image, patternSize, corners, patternWasFound) → image

参数说明

返回值

绘制了角点的图像(与输入 image 是同一对象,原地修改)。

核心功能

完整检测到角点:绘制所有角点,并连接成棋盘格网格(彩色线条);

未完整检测到角点:仅绘制检测到的零散角点(无网格);

角点以红色小圆点标记,网格以彩色线条连接(便于直观验证检测效果)。

使用步骤(完整示例)

完整代码(棋盘格角点检测 + 可视化)
bash 复制代码
# -*- coding:utf-8 -*-
import cv2 as cv
import sys


if __name__ == '__main__':
    # 读取图像
    image1 = cv.imread('./images/test01.jpg')
    image2 = cv.imread('./images/test02.png')
    if image1 is None or image2 is None:
        print('Failed to read test01.jpg or test02.png.')
        sys.exit()

    # 转为灰度图像
    gray1 = cv.cvtColor(image1, cv.COLOR_BGR2GRAY)
    gray2 = cv.cvtColor(image2, cv.COLOR_BGR2GRAY)

    # 定义数目尺寸
    board_size1 = (9, 6)
    board_size2 = (7, 7)

    # 检测角点
    _, points1 = cv.findChessboardCorners(gray1, board_size1)
    _, points2 = cv.findCirclesGrid(gray2, board_size2)

    # 细化角点坐标
    _, points1 = cv.find4QuadCornerSubpix(gray1, points1, (5, 5))
    _, points2 = cv.find4QuadCornerSubpix(gray2, points2, (5, 5))

    # 绘制角点检测结果
    image1 = cv.drawChessboardCorners(image1, board_size1, points1, True)
    image2 = cv.drawChessboardCorners(image2, board_size2, points2, True)

    # 展示结果
    cv.imshow('Square Result', image1)
    cv.imshow('Circle Result', image2)
    cv.waitKey(0)
    cv.destroyAllWindows()

关键说明

棋盘格准备:需使用黑白相间的棋盘格(如 9x6 内角点对应 10x7 个方格);

亚像素细化:cv.cornerSubPix 是可选步骤,但能大幅提升角点坐标精度(对相机标定至关重要);

检测失败处理:若 ret=False,说明未完整检测到所有角点,需检查图像(如光照、棋盘格完整性)。

常见问题与解决方案

扩展应用

cv.drawChessboardCorners 常与相机标定流程结合:

检测多张棋盘格图像的角点;

用 cv.calibrateCamera 计算内参 / 外参;

用 cv.undistort 校正图像畸变;

绘制角点验证标定结果的准确性。

如果需要相机标定的完整代码示例,可以补充说明,我会进一步完善。

相关推荐
聆风吟º11 分钟前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile4 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5774 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert