小分子的语言模型MolT5的使用

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

这是MolT5的安装和embedding获取(gpu版)。

零、安装

c 复制代码
conda activate base
conda install -c conda-forge mamba -y

conda create -n molt5 python=3.9 -y
conda activate molt5

mamba install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia -y
pip install sentencepiece accelerate
mamba install -c conda-forge rdkit -y
pip install "transformers==4.38.2"

# 需要离线的,去下载https://huggingface.co/laituan245/molt5-base,作为./molt5-base

一、使用步骤

1.引入库

c 复制代码
import torch
from transformers import T5Tokenizer, T5EncoderModel

2.获取embedding

c 复制代码
device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = T5Tokenizer.from_pretrained("./molt5-base")
model = T5EncoderModel.from_pretrained("./molt5-base").to(device)
model.eval()

def get_molt5_embedding(
    smiles: str,
    pooling: str = "mean"   # "mean" | "cls"
):
    """
    Returns a 1D torch tensor embedding for a SMILES string.
    """
    inputs = tokenizer(
        smiles,
        return_tensors="pt",
        padding=False,
        truncation=True,
        max_length=512
    ).to(device)

    with torch.no_grad():
        outputs = model(**inputs)  # last_hidden_state: [1, L, D]

    hidden = outputs.last_hidden_state.squeeze(0)  # [L, D]

    if pooling == "mean":
        emb = hidden.mean(dim=0)   # [D]
    elif pooling == "cls":
        emb = hidden[0]            # T5 没有真 CLS,只是第一个 token
    else:
        raise ValueError("pooling must be 'mean' or 'cls'")

    return emb.cpu()

smiles = "CCOC(=O)C1=CC=CC=C1"  # unmapped canonical SMILES
emb = get_molt5_embedding(smiles)

print(emb.shape)

输出:torch.Size([768])


总结

MolT5是小分子预训练好的语言模型,它能获得小分子768维的embedding,进行后续建模和操作。

相关推荐
wenzhangli72 分钟前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined3 分钟前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
brave and determined3 分钟前
CANN算子开发基础框架opbase完全解析
人工智能
一枕眠秋雨>o<8 分钟前
调度的艺术:CANN Runtime如何编织昇腾AI的时空秩序
人工智能
晚烛15 分钟前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼16 分钟前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc
波动几何27 分钟前
OpenClaw 构建指南:打造智能多工具编排运行时框架
人工智能
程序猿追28 分钟前
深度解码AI之魂:CANN Compiler 核心架构与技术演进
人工智能·架构
新缸中之脑29 分钟前
Figma Make 提示工程
人工智能·figma
赫尔·普莱蒂科萨·帕塔30 分钟前
智能体工程
人工智能·机器人·软件工程·agi