4090实战:ComfyUI运行Qwen-Image-Edit-2511模型指南(含避坑要点)

Qwen-Image-Edit-2511作为一款性能出色的图像编辑模型,在ComfyUI中部署时却受限于显存资源。本文针对4090显卡(24G显存)场景,分享量化模型的部署流程、关键避坑点,以及不同采样步数下的效果对比,帮助大家快速落地实践。

一、前置准备:ComfyUI安装

ComfyUI基础安装流程此处不赘述,推荐参考官方中文指南,步骤清晰且适配Linux环境:ComfyUI Linux安装官方指南

二、核心问题:显存限制与解决方案

4090显卡的24G显存无法承载Qwen-Image-Edit-2511原始模型(显存溢出),因此必须使用量化模型。考虑到外网访问和下载限制,本文提供基于hugging-face镜像modelscope的国内可访问下载链接,同时明确各模型的存放路径(直接关系到模型能否正常加载)。

2.1 量化模型下载清单(含路径+命令)

所有模型需下载至ComfyUI对应目录,以下是完整的路径说明和wget下载命令(复制到终端直接执行即可):

1. LoRA模型(路径:ComfyUI/models/loras)
bash 复制代码
wget https://hf-mirror.com/lightx2v/Qwen-Image-Edit-2511-Lightning/resolve/main/Qwen-Image-Edit-2511-Lightning-4steps-V1.0-bf16.safetensors
2. VAE模型(路径:ComfyUI/models/vae)
bash 复制代码
wget https://hf-mirror.com/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/vae/qwen_image_vae.safetensors
3. UNet模型(路径:ComfyUI/models/unet)
bash 复制代码
wget "https://modelscope.cn/api/v1/models/unsloth/Qwen-Image-Edit-2511-GGUF/repo?Revision=master&FilePath=qwen-image-edit-2511-Q4_K_M.gguf" -O qwen-image-edit-2511-Q4_K_M.gguf
4. CLIP模型(路径:ComfyUI/models/clip)
bash 复制代码
# 主模型文件
wget -c "https://modelscope.cn/api/v1/models/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/repo?Revision=master&FilePath=Qwen2.5-VL-7B-Instruct-Q4_K_M.gguf" -O Qwen2.5-VL-7B-Instruct-Q4_K_M.gguf

# 关键依赖文件(必下!)
wget -c "https://modelscope.cn/api/v1/models/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/repo?Revision=master&FilePath=mmproj-F16.gguf" -O Qwen2.5-VL-7B-Instruct-mmproj-BF16.gguf

2.2 致命坑点:缺失mmproj文件导致的报错解决方案

⚠️ 重点提醒:CLIP模型对应的mmproj文件是必下载项!缺失该文件会直接导致图像编辑时出现「矩阵维度不匹配」的致命错误,排查过程耗时耗力。

我首次部署时因遗漏该文件,出现如下报错(核心信息:mat1 and mat2 shapes cannot be multiplied):

复制代码
Prompt executed in 10.11 seconds
got prompt
!!! Exception during processing !!! mat1 and mat2 shapes cannot be multiplied (748x1280 and 3840x1280)
Traceback (most recent call last):
  File "/root/comfy/ComfyUI/execution.py", line 516, in execute
    output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data)
                                                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/execution.py", line 330, in get_output_data
    return_values = await _async_map_node_over_list(prompt_id, unique_id, obj, input_data_all, obj.FUNCTION, allow_interrupt=True, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/execution.py", line 304, in _async_map_node_over_list
    await process_inputs(input_dict, i)
  File "/root/comfy/ComfyUI/execution.py", line 292, in process_inputs
    result = f(**inputs)
             ^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy_api/internal/__init__.py", line 149, in wrapped_func
    return method(locked_class, **inputs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy_api/latest/_io.py", line 1520, in EXECUTE_NORMALIZED
    to_return = cls.execute(*args, **kwargs)
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy_extras/nodes_qwen.py", line 103, in execute
    conditioning = clip.encode_from_tokens_scheduled(tokens)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd.py", line 207, in encode_from_tokens_scheduled
    pooled_dict = self.encode_from_tokens(tokens, return_pooled=return_pooled, return_dict=True)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd.py", line 271, in encode_from_tokens
    o = self.cond_stage_model.encode_token_weights(tokens)
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/text_encoders/qwen_image.py", line 62, in encode_token_weights
    out, pooled, extra = super().encode_token_weights(token_weight_pairs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd1_clip.py", line 704, in encode_token_weights
    out = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd1_clip.py", line 45, in encode_token_weights
    o = self.encode(to_encode)
        ^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd1_clip.py", line 297, in encode
    return self(tokens)
           ^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd1_clip.py", line 257, in forward
    embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
                                                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/sd1_clip.py", line 219, in process_tokens
    emb, extra = self.transformer.preprocess_embed(emb, device=device)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/text_encoders/llama.py", line 593, in preprocess_embed
    return self.visual(image.to(device, dtype=torch.float32), grid), grid
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/text_encoders/qwen_vl.py", line 425, in forward
    hidden_states = block(hidden_states, position_embeddings, cu_seqlens_now, optimized_attention=optimized_attention)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/text_encoders/qwen_vl.py", line 252, in forward
    hidden_states = self.attn(hidden_states, position_embeddings, cu_seqlens, optimized_attention)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/text_encoders/qwen_vl.py", line 195, in forward
    qkv = self.qkv(hidden_states)
          ^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy-env/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/ops.py", line 164, in forward
    return self.forward_comfy_cast_weights(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/custom_nodes/ComfyUI-GGUF/ops.py", line 217, in forward_comfy_cast_weights
    out = super().forward_comfy_cast_weights(input, *args, **kwargs)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/root/comfy/ComfyUI/comfy/ops.py", line 157, in forward_comfy_cast_weights
    x = torch.nn.functional.linear(input, weight, bias)
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: mat1 and mat2 shapes cannot be multiplied (748x1280 and 3840x1280)

最终通过GitHubissue找到解决方案(感谢开源社区):TextEncodeQwenImageEdit mat1 and mat2 shapes cannot be multiplied 问题解决方案,核心就是补全mmproj文件。建议大家直接按上文清单下载,避免重复踩坑。

三、工作流配置与效果测试

模型部署完成后,需配置对应的工作流。以下是我测试用的工作流截图(可直接参考复刻):

本次测试以「三图编辑」为场景,重点验证不同K采样器步数对输出效果的影响,测试环境为4090显卡+Linux系统,具体结果如下:

3.1 20步采样:速度快但效果差

  • 运行时长:1分40秒
  • 效果问题:人物手臂存在明显割裂感;人物面部失真严重(如"马爸爸"面部完全识别不出)
  • 效果截图:

3.2 40步采样:效果略有提升但仍有缺陷

  • 运行时长:4分37秒
  • 效果问题:手部与手臂的割裂感未完全解决,仍存在明显衔接瑕疵
  • 效果截图:

3.3 60步采样:效果达标但耗时增加

  • 运行时长:6分57秒
  • 效果表现:手臂衔接问题基本解决;但人物面部仍与原角色有较大差异,且出现非预期的衣物颜色变化(如浅灰色衣物变为黑色)
  • 效果截图:

四、总结与后续优化方向

  1. 4090显卡运行Qwen-Image-Edit-2511需优先选择量化模型,按本文提供的国内镜像链接下载可规避网络问题,且mmproj文件不可遗漏
  2. 采样步数与效果、速度呈正相关:20步适合快速预览,60步可解决核心瑕疵,但需接受更长耗时和人物脸部变更;
  3. 后续优化方向:可尝试调整工作流中的提示词精度、优化流程参数,或测试更高精度的量化模型(如Q2_K等),平衡效果与耗时。
    如果大家在部署过程中遇到其他问题,欢迎在评论区交流~
相关推荐
沛沛老爹2 小时前
从Web开发到AI应用——用FastGPT构建实时问答系统
前端·人工智能·langchain·rag·advanced-rag
戴西软件2 小时前
CAxWorks.VPG车辆工程仿真软件:打造新能源汽车安全的“数字防线“
android·大数据·运维·人工智能·安全·低代码·汽车
yuanmenghao2 小时前
自动驾驶中间件iceoryx-介绍
人工智能·中间件·自动驾驶
weixin199701080162 小时前
哔哩哔哩 item_search_video - 根据关键词获取视频列表接口对接全攻略:从入门到精通
人工智能·音视频
山海青风2 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 2 : 数据与问题类型
人工智能·python
这张生成的图像能检测吗2 小时前
(论文速读)VJTNN+GAN分子优化的图到图翻译
人工智能·图神经网络·生成模型·分子设计·药物发现
AI营销实验室2 小时前
2025年AI CRM系统前瞻:原圈科技智能线索分配机制解析
大数据·人工智能
week_泽2 小时前
7、OpenCV ORB特征检测笔记
人工智能·笔记·opencv
jay神2 小时前
基于YOLOv8的行人车辆检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计