线性代数(十)四个基本子空间与矩阵空间

对于一个矩阵A(m行n列),可以找到其对应的四个子空间,它们分别是:

1.列空间,C(A);因为每个列向量是m维的,所以C(A)是的子空间

2.零空间,N(A);因为每个解向量是n维的,所以N(A)是的子空间

3.行空间,或者是对A取转置后的列空间,是n行m列,其每个列向量是n维的,所以的子空间

4.对A取转置后的零空间,,又称A的左零空间。是n行m列,其每个解向量是m维的,所以的子空间。(注:为什么叫左零空间:,两边同时转置,得,所求实际上是,是一个行向量。左零空间的基都是行向量)

如果矩阵A的rank=r,则显然C(A)的维度为r,而的维度同样为r。

而N(A)的维度为n-r,因为零空间的维度就是自由变量对应的特解的数量,同时也是列空间的基的个数。而又因为矩阵转置不改变矩阵的rank,那么矩阵的左零空间的维度也为m-r。

如何得到矩阵的四个子空间的一组基呢?举例说明,

显然rank(A)=2,对于C(A)来说,其维度为2,显然其各个主列就是其一组基。如第一、二列。

而对于,我们可以先对A做初等行变换,将其化为行最简形式,化简结果(注:初等行变换会改变矩阵的列空间,但不会改变行空间);显然,矩阵R的前两行构成了的一组基。

对于N(A),根据前文内容的介绍,我们可以将矩阵A化简为行最简形式R,并且,且零空间的基为

下面重点介绍如何求左零空间的基,即的基。

,E为初等矩阵。

代入,得,显然E的最后一行就是左零空间的基,维度为1,即只有一个基向量。

向量空间与子空间的概念可以扩展到矩阵空间与子空间,因为向量本身就是特殊的矩阵。

例如:所有的3*3矩阵可以构成一个矩阵空间M,对于其中的3阶方阵,A+B=C,C仍然是三阶方阵(加法封闭);对于实数a,aA=D,D仍然是三阶方阵(数乘封闭)

M的子空间可以是:1.上三角阵空间;2.对称矩阵空间。

而上三角阵空间和对称矩阵空间的交集显然也是一个子空间,即对角阵空间(子空间和子空间的交集仍然是子空间)

既然是空间,同样的有基和维度的概念,对应一个三阶对角阵空间,其维度为3,一组基为:

。矩阵空间实际上是对向量空间的扩展,如将空间扩展为

相关推荐
甄心爱学习16 小时前
SVD求解最小二乘(手写推导)
线性代数·算法·svd
RedMery21 小时前
厄米特矩阵的性质
线性代数·矩阵
如果你想拥有什么先让自己配得上拥有2 天前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
Venus-ww2 天前
对多连杆机器人进行运动学正解与逆解的建模过程
线性代数·机器人
qq_430855883 天前
线代第二章矩阵第五、六、七节矩阵的转置、方阵的行列式、方阵的伴随矩阵
线性代数·算法·矩阵
柔情的菜刀3 天前
基于 RK3588 的图像拼接系统-透视矩阵
线性代数·矩阵
passxgx3 天前
11.3 迭代法和预条件子
线性代数·算法·矩阵
qq_430855883 天前
线代第二章矩阵第八节逆矩阵、解矩阵方程
线性代数·算法·矩阵
艾醒(AiXing-w)3 天前
大模型原理剖析——矩阵吸收优化:LLM推理加速的核心原理与实践
人工智能·线性代数·语言模型·矩阵