基于BP_Adaboost的分类器和RBF神经网络回归的实现方法。这两种方法分别针对分类和回归问题,在各自的领域都有很好的表现。
基于BP_Adaboost的分类器
算法原理
BP_Adaboost结合了BP神经网络的非线性映射能力和Adaboost的集成学习优势:
matlab
classdef BP_Adaboost_Classifier < handle
properties
num_weak_classifiers % 弱分类器数量
bp_networks % BP神经网络弱分类器集合
alpha_weights % 弱分类器权重
sample_weights % 样本权重
max_epochs % 最大训练轮数
hidden_layer_size % 隐藏层大小
end
methods
function obj = BP_Adaboost_Classifier(num_classifiers, hidden_size, max_epochs)
obj.num_weak_classifiers = num_classifiers;
obj.hidden_layer_size = hidden_size;
obj.max_epochs = max_epochs;
obj.bp_networks = cell(num_classifiers, 1);
obj.alpha_weights = zeros(num_classifiers, 1);
end
完整的BP_Adaboost实现
matlab
function [model, training_info] = train_bp_adaboost(X_train, y_train, params)
% BP_Adaboost分类器训练
% 输入:
% X_train: 训练特征 [N x D]
% y_train: 训练标签 [N x 1] (二分类: -1/+1 或 0/1)
% params: 参数结构体
% 输出:
% model: 训练好的模型
% training_info: 训练过程信息
[N, D] = size(X_train);
% 默认参数
if nargin < 3
params.num_classifiers = 10;
params.hidden_size = 10;
params.max_epochs = 100;
params.learning_rate = 0.1;
end
% 初始化模型
model = struct();
model.num_classifiers = params.num_classifiers;
model.bp_networks = cell(params.num_classifiers, 1);
model.alpha_weights = zeros(params.num_classifiers, 1);
model.params = params;
% 初始化样本权重
sample_weights = ones(N, 1) / N;
% 存储训练信息
training_info = struct();
training_info.errors = zeros(params.num_classifiers, 1);
training_info.alphas = zeros(params.num_classifiers, 1);
% Adaboost迭代训练
for t = 1:params.num_classifiers
fprintf('训练第 %d/%d 个弱分类器...\n', t, params.num_classifiers);
% 1. 根据样本权重训练BP神经网络
bp_net = train_bp_classifier(X_train, y_train, sample_weights, params);
% 2. 计算当前分类器的加权错误率
predictions = predict_bp_classifier(bp_net, X_train);
incorrect = (predictions ~= y_train);
weighted_error = sum(sample_weights .* incorrect);
% 3. 计算当前分类器的权重
if weighted_error >= 0.5
fprintf('弱分类器 %d 错误率过高,跳过\n', t);
continue;
end
alpha_t = 0.5 * log((1 - weighted_error) / (weighted_error + eps));
% 4. 更新样本权重
sample_weights = sample_weights .* exp(-alpha_t * y_train .* predictions);
sample_weights = sample_weights / sum(sample_weights);
% 5. 保存模型
model.bp_networks{t} = bp_net;
model.alpha_weights(t) = alpha_t;
training_info.errors(t) = weighted_error;
training_info.alphas(t) = alpha_t;
fprintf('弱分类器 %d: 错误率=%.4f, 权重=%.4f\n', ...
t, weighted_error, alpha_t);
end
% 移除未使用的分类器
valid_indices = model.alpha_weights ~= 0;
model.bp_networks = model.bp_networks(valid_indices);
model.alpha_weights = model.alpha_weights(valid_indices);
model.num_classifiers = sum(valid_indices);
fprintf('训练完成,有效弱分类器数量: %d\n', model.num_classifiers);
end
function bp_net = train_bp_classifier(X, y, sample_weights, params)
% 训练单个BP神经网络分类器
[N, D] = size(X);
% 创建前馈神经网络
bp_net = feedforwardnet(params.hidden_size);
bp_net.trainParam.epochs = params.max_epochs;
bp_net.trainParam.lr = params.learning_rate;
bp_net.trainParam.showWindow = false;
% 准备训练数据 (MATLAB神经网络工具箱格式)
inputs = X';
targets = full(ind2vec((y > 0) + 1, 2))'; % 转换为one-hot编码
% 使用样本权重进行训练(通过重复采样实现)
effective_weights = sample_weights / min(sample_weights);
replication_factors = round(effective_weights * 10); % 缩放因子
% 创建加权的训练集
weighted_inputs = [];
weighted_targets = [];
for i = 1:N
replicated_input = repmat(inputs(:, i), 1, replication_factors(i));
replicated_target = repmat(targets(i, :)', 1, replication_factors(i));
weighted_inputs = [weighted_inputs, replicated_input];
weighted_targets = [weighted_targets, replicated_target];
end
% 训练网络
[bp_net, ~] = train(bp_net, weighted_inputs, weighted_targets);
end
function predictions = predict_bp_classifier(bp_net, X)
% 使用BP神经网络进行分类预测
outputs = bp_net(X');
[~, predicted_classes] = max(outputs, [], 1);
predictions = 2 * (predicted_classes' == 2) - 1; % 转换回 -1/+1
end
function final_predictions = predict_bp_adaboost(model, X_test)
% BP_Adaboost集成预测
[N, ~] = size(X_test);
num_classifiers = model.num_classifiers;
% 收集所有弱分类器的预测
weak_predictions = zeros(N, num_classifiers);
for t = 1:num_classifiers
weak_predictions(:, t) = predict_bp_classifier(...
model.bp_networks{t}, X_test);
end
% 加权投票
weighted_votes = weak_predictions * model.alpha_weights;
final_predictions = sign(weighted_votes);
end
BP_Adaboost应用示例
matlab
% BP_Adaboost分类器示例
function bp_adaboost_example()
% 生成分类数据
rng(42);
[X, y] = generate_moon_data(500, 0.1);
% 划分训练测试集
[X_train, X_test, y_train, y_test] = train_test_split(X, y, 0.7);
% 设置参数
params.num_classifiers = 15;
params.hidden_size = 8;
params.max_epochs = 200;
params.learning_rate = 0.1;
% 训练BP_Adaboost分类器
tic;
[model, info] = train_bp_adaboost(X_train, y_train, params);
training_time = toc;
% 预测
y_pred = predict_bp_adaboost(model, X_test);
% 评估性能
accuracy = sum(y_pred == y_test) / length(y_test);
precision = sum((y_pred == 1) & (y_test == 1)) / sum(y_pred == 1);
recall = sum((y_pred == 1) & (y_test == 1)) / sum(y_test == 1);
f1_score = 2 * (precision * recall) / (precision + recall);
fprintf('BP_Adaboost 性能:\n');
fprintf('准确率: %.4f\n', accuracy);
fprintf('精确率: %.4f\n', precision);
fprintf('召回率: %.4f\n', recall);
fprintf('F1分数: %.4f\n', f1_score);
fprintf('训练时间: %.2f 秒\n', training_time);
% 可视化结果
visualize_classification_results(X_train, y_train, X_test, y_test, y_pred, model, info);
end
function [X, y] = generate_moon_data(n_samples, noise)
% 生成半月形数据
theta = linspace(0, pi, n_samples)';
X1 = [cos(theta) .* (1 + noise*randn(n_samples,1)), ...
sin(theta) .* (1 + noise*randn(n_samples,1))];
X2 = [1 - cos(theta) .* (1 + noise*randn(n_samples,1)), ...
1 - sin(theta) .* (1 + noise*randn(n_samples,1)) - 0.5];
X = [X1; X2];
y = [ones(n_samples,1); -ones(n_samples,1)];
% 添加随机扰动
X = X + noise * randn(size(X));
end
function [X_train, X_test, y_train, y_test] = train_test_split(X, y, train_ratio)
% 划分训练测试集
n = size(X, 1);
n_train = round(train_ratio * n);
indices = randperm(n);
train_indices = indices(1:n_train);
test_indices = indices(n_train+1:end);
X_train = X(train_indices, :);
X_test = X(test_indices, :);
y_train = y(train_indices);
y_test = y(test_indices);
end
RBF神经网络回归
算法原理
RBF神经网络通过径向基函数进行非线性映射,具有快速收敛和良好逼近能力:
matlab
classdef RBF_Regressor < handle
properties
num_centers % 隐藏层中心数量
centers % RBF中心点
sigma % 径向基函数宽度参数
weights % 输出层权重
beta % 正则化参数
activation_function % 激活函数类型
end
methods
function obj = RBF_Regressor(num_centers, sigma, beta)
obj.num_centers = num_centers;
obj.sigma = sigma;
obj.beta = beta;
obj.activation_function = @(r) exp(-(r.^2) / (2 * sigma^2));
end
完整的RBF回归实现
matlab
function rbf_model = train_rbf_regression(X_train, y_train, params)
% RBF神经网络回归训练
% 输入:
% X_train: 训练特征 [N x D]
% y_train: 训练目标值 [N x 1]
% params: 参数结构体
% 输出:
% rbf_model: 训练好的RBF模型
[N, D] = size(X_train);
% 默认参数
if nargin < 3
params.num_centers = min(50, floor(N/2));
params.sigma_method = 'knn';
params.knn_k = 5;
params.beta = 1e-6; % 正则化参数
params.center_method = 'kmeans';
end
% 初始化模型
rbf_model = struct();
rbf_model.params = params;
rbf_model.D = D;
% 步骤1: 选择RBF中心点
fprintf('选择RBF中心点...\n');
if params.num_centers >= N
% 如果中心数量大于样本数,使用所有样本作为中心
rbf_model.centers = X_train;
rbf_model.num_centers = N;
else
switch params.center_method
case 'kmeans'
% 使用K-means聚类选择中心
[~, centers] = kmeans(X_train, params.num_centers, ...
'MaxIter', 100, 'Replicates', 3);
rbf_model.centers = centers;
case 'random'
% 随机选择中心
indices = randperm(N, params.num_centers);
rbf_model.centers = X_train(indices, :);
otherwise
error('不支持的中心选择方法');
end
rbf_model.num_centers = params.num_centers;
end
% 步骤2: 计算径向基函数宽度参数sigma
fprintf('计算RBF宽度参数...\n');
rbf_model.sigma = calculate_sigma(rbf_model.centers, params);
% 步骤3: 计算隐藏层输出(设计矩阵)
fprintf('计算隐藏层输出...\n');
Phi = compute_rbf_activations(X_train, rbf_model.centers, rbf_model.sigma);
% 步骤4: 计算输出层权重(正则化最小二乘)
fprintf('计算输出层权重...\n');
if params.beta > 0
% 带正则化的权重计算
rbf_model.weights = (Phi' * Phi + params.beta * eye(rbf_model.num_centers)) \ (Phi' * y_train);
else
% 普通最小二乘
rbf_model.weights = Phi \ y_train;
end
fprintf('RBF回归训练完成。中心数量: %d, Sigma: %.4f\n', ...
rbf_model.num_centers, rbf_model.sigma);
end
function sigma = calculate_sigma(centers, params)
% 计算RBF宽度参数sigma
num_centers = size(centers, 1);
switch params.sigma_method
case 'fixed'
sigma = params.fixed_sigma;
case 'knn'
% 基于K最近邻距离计算sigma
if num_centers > 1
% 计算所有中心点两两之间的距离
distances = pdist2(centers, centers);
% 将对角线元素设为无穷大,避免选择自身
distances(logical(eye(num_centers))) = inf;
% 取每个点的k个最近邻距离的平均值
knn_distances = zeros(num_centers, 1);
for i = 1:num_centers
sorted_dists = sort(distances(i, :));
knn_distances(i) = mean(sorted_dists(1:min(params.knn_k, num_centers-1)));
end
sigma = mean(knn_distances);
else
sigma = 1.0;
end
case 'global'
% 使用全局平均距离
if num_centers > 1
all_distances = pdist(centers);
sigma = mean(all_distances) / sqrt(2 * num_centers);
else
sigma = 1.0;
end
otherwise
sigma = 1.0;
end
% 确保sigma不为零
sigma = max(sigma, 1e-6);
end
function Phi = compute_rbf_activations(X, centers, sigma)
% 计算RBF隐藏层激活值
[N, ~] = size(X);
num_centers = size(centers, 1);
Phi = zeros(N, num_centers);
for i = 1:N
for j = 1:num_centers
% 计算欧氏距离
r = norm(X(i, :) - centers(j, :));
% 高斯径向基函数
Phi(i, j) = exp(-(r^2) / (2 * sigma^2));
end
end
end
function y_pred = predict_rbf_regression(rbf_model, X_test)
% RBF神经网络回归预测
% 计算隐藏层输出
Phi_test = compute_rbf_activations(X_test, rbf_model.centers, rbf_model.sigma);
% 计算预测值
y_pred = Phi_test * rbf_model.weights;
end
RBF回归应用示例
matlab
% RBF神经网络回归示例
function rbf_regression_example()
% 生成回归数据
rng(42);
[X, y] = generate_sinc_data(500, 0.1);
% 划分训练测试集
[X_train, X_test, y_train, y_test] = train_test_split(X, y, 0.7);
% 设置RBF参数
params.num_centers = 30;
params.sigma_method = 'knn';
params.knn_k = 5;
params.beta = 1e-8;
params.center_method = 'kmeans';
% 训练RBF回归模型
tic;
rbf_model = train_rbf_regression(X_train, y_train, params);
training_time = toc;
% 预测
y_pred = predict_rbf_regression(rbf_model, X_test);
% 评估性能
mse = mean((y_pred - y_test).^2);
rmse = sqrt(mse);
mae = mean(abs(y_pred - y_test));
r2 = 1 - sum((y_test - y_pred).^2) / sum((y_test - mean(y_test)).^2);
fprintf('RBF回归性能:\n');
fprintf('均方误差 (MSE): %.6f\n', mse);
fprintf('均方根误差 (RMSE): %.6f\n', rmse);
fprintf('平均绝对误差 (MAE): %.6f\n', mae);
fprintf('决定系数 (R²): %.4f\n', r2);
fprintf('训练时间: %.2f 秒\n', training_time);
% 可视化结果
visualize_regression_results(X_train, y_train, X_test, y_test, y_pred, rbf_model);
end
function [X, y] = generate_sinc_data(n_samples, noise)
% 生成Sinc函数数据
X = linspace(-10, 10, n_samples)';
y = sin(pi * X) ./ (pi * X);
y(X == 0) = 1; % 处理除零情况
% 添加噪声
y = y + noise * randn(size(y));
X = X + 0.1 * randn(size(X));
end
性能比较与可视化
matlab
function compare_performance()
% 比较BP_Adaboost和RBF的性能
% 分类任务比较
fprintf('=== 分类任务比较 ===\n');
[X_class, y_class] = generate_moon_data(800, 0.15);
[Xc_train, Xc_test, yc_train, yc_test] = train_test_split(X_class, y_class, 0.7);
% BP_Adaboost
tic;
bp_params.num_classifiers = 10;
bp_params.hidden_size = 8;
bp_model = train_bp_adaboost(Xc_train, yc_train, bp_params);
bp_time = toc;
bp_pred = predict_bp_adaboost(bp_model, Xc_test);
bp_accuracy = sum(bp_pred == yc_test) / length(yc_test);
fprintf('BP_Adaboost - 准确率: %.4f, 时间: %.2fs\n', bp_accuracy, bp_time);
% 回归任务比较
fprintf('\n=== 回归任务比较 ===\n');
[X_reg, y_reg] = generate_sinc_data(600, 0.1);
[Xr_train, Xr_test, yr_train, yr_test] = train_test_split(X_reg, y_reg, 0.7);
% RBF回归
tic;
rbf_params.num_centers = 25;
rbf_model = train_rbf_regression(Xr_train, yr_train, rbf_params);
rbf_time = toc;
rbf_pred = predict_rbf_regression(rbf_model, Xr_test);
rbf_rmse = sqrt(mean((rbf_pred - yr_test).^2));
fprintf('RBF回归 - RMSE: %.6f, 时间: %.2fs\n', rbf_rmse, rbf_time);
% 与传统方法比较
compare_with_traditional_methods(Xc_train, yc_train, Xc_test, yc_test, ...
Xr_train, yr_train, Xr_test, yr_test);
end
function visualize_classification_results(X_train, y_train, X_test, y_test, y_pred, model, info)
% 可视化分类结果
figure('Position', [100, 100, 1200, 400]);
% 子图1: 分类边界
subplot(1, 3, 1);
h1 = gscatter(X_train(:,1), X_train(:,2), y_train, 'rb', 'o', 8, 'on');
hold on;
h2 = gscatter(X_test(:,1), X_test(:,2), y_pred, 'rb', 'x', 10, 'on');
title('BP-Adaboost分类结果');
xlabel('特征1');
ylabel('特征2');
legend([h1; h2], {'训练-类1', '训练-类2', '测试-类1', '测试-类2'});
% 子图2: 弱分类器错误率
subplot(1, 3, 2);
plot(1:length(info.errors), info.errors, 'bo-', 'LineWidth', 2, 'MarkerSize', 6);
xlabel('弱分类器序号');
ylabel('加权错误率');
title('弱分类器错误率演化');
grid on;
% 子图3: 弱分类器权重
subplot(1, 3, 3);
bar(info.alphas, 'FaceColor', [0.3, 0.6, 0.9], 'EdgeColor', 'black');
xlabel('弱分类器序号');
ylabel('权重系数');
title('弱分类器权重分布');
grid on;
end
参考代码 基于BP_Adaboost的分类器,RBF神经网络的回归 www.3dddown.com/csa/82310.html
关键优势与应用场景
BP_Adaboost优势:
- 高精度:集成学习提升分类准确率
- 鲁棒性:对噪声数据和异常值不敏感
- 自适应:自动调整样本权重关注难分类样本
RBF回归优势:
- 快速收敛:比传统BP网络训练更快
- 全局逼近:理论上可以逼近任何连续函数
- 数值稳定性:基于最小二乘的权重计算
典型应用场景:
- BP_Adaboost:图像分类、故障诊断、信用评分
- RBF回归:时间序列预测、函数逼近、系统建模
这两种方法在实际应用中可以根据具体问题特点进行选择和调优,通常能够获得比单一模型更好的性能表现。