适合一维信号时间序列分割与窗口检测的问题的深度神经网络架构

可选用的网络架构

  1. 时序卷积网络(TCN)
    优点:感受野大、并行计算、适合长序列。

适用性:可直接处理一维信号,输出与输入同长度的时间标签(如"是否为RSW")。

改进方向:引入空洞卷积、残差连接,增强多尺度特征提取能力。

  1. U-Net 结构(1D版)
    优点:在图像分割中表现优异,1D U-Net 已在生物信号分割中成功应用。

适用性:编码器提取特征,解码器恢复时间分辨率,适合输出与输入等长的分割掩码。

改进方向:在跳跃连接中引入注意力机制,提升对干扰区域的抑制能力。

  1. Transformer / 自注意力网络
    优点:能捕捉长距离依赖,适合处理非局部干扰模式。

适用性:将信号分段为token,通过自注意力学习全局上下文,输出每个时间点属于RSW的概率。

改进方向:轻量化设计(如Linformer、Performer),降低计算复杂度。

  1. CNN + RNN / LSTM 混合模型
    优点:CNN提取局部特征,RNN捕捉时序依赖。

适用性:适合时序动态变化明显的干扰场景。

改进方向:使用BiLSTM或GRU,结合注意力机制。

网络结构创新

设计一个多尺度特征融合网络,同时捕捉短时脉冲干扰和长时重复干扰。

引入可学习的时序注意力模块,让网络自动聚焦于可能的安全窗口区域。

结合对抗生成网络(GAN) 进行数据增强,提升模型对未知干扰模式的泛化能力。

✅ 任务形式创新

不直接回归窗口起止点,而是输出一个概率热图,再通过后处理提取窗口。

设计一个端到端的窗口序列生成模型,类似目标检测中的Anchor-Free方法。

✅ 信号特征融合

除了时域信号,可融合时频图(STFT、CWT) 作为输入,让网络同时学习时域和频域特征。

引入雷达先验知识(如脉冲宽度、带宽约束)作为网络的约束条件。

✅ 轻量化与实时性

设计一个轻量级网络,适合在雷达嵌入式系统中实时运行。

提出一种增量学习或在线学习机制,使模型能适应动态变化的干扰环境。

相关推荐
徐小夕@趣谈前端1 分钟前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术2 分钟前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授2 分钟前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
池央4 分钟前
CANN GE 深度解析:图编译器的核心优化策略、执行流调度与模型下沉技术原理
人工智能·ci/cd·自动化
七月稻草人7 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人7 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘9 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞11 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能
池央11 分钟前
CANN 算子生态的深度演进:稀疏计算支持与 PyPTO 范式的抽象层级
运维·人工智能·信号处理
方见华Richard12 分钟前
世毫九实验室(Shardy Lab)研究成果清单(2025版)
人工智能·经验分享·交互·原型模式·空间计算