Tensors (张量)

导入pytorch

python 复制代码
import torch

构造张量

python 复制代码
x = torch.empty(5, 3)  # 构造一个5x3矩阵,不初始化
y = torch.randn(5, 3)  # 构造一个随机初始化的矩阵
z = torch.zeros(5, 3)  # 构造一个矩阵全为 0

# 构造一个张量,直接使用数据
a = torch.tensor([1.2, 2, 3])  # 单行
b = torch.tensor([[1.2, 2, 3], [2, 3, 4]])  # 多行

# 创建一个 tensor 基于已经存在的 tensor
b = b.new_ones(3, 4, dtype=torch.double)  # 重新指定了size
b = b.new_ones([3, 4], dtype=torch.double)  # 和上面一样效果
a = torch.rand_like(b, dtype=torch.float)  # size依赖输入的形参b

获取张量的维度信息

python 复制代码
print(a.size())  # torch.Size([3, 4])

加法

python 复制代码
print(z + y)  # 加法
result = torch.empty(5, 3)
print(torch.add(z, y, out=result))  # 同样是加法,和上面加法效果一样,提供一个输出tensor作为参数,如果它的size和z+y不同,会提示错误
w = y.add_(z)  # y已经发生改变
print(y)
print(w)

索引操作

python 复制代码
print(y[:,0]) # 输出的是单行矩阵,数据是第一列的所有数字
print(y[1,2]) # 输出的是第二行,第三列的数字
print(y[1,:]) # 输出的是单行矩阵,数据是第二行的所有数值

改变tensor的大小或者形状

python 复制代码
u = w.view(15) # 改变成单行矩阵,必须是原来的矩阵的行数列数乘积
s = w.view(-1,5) # 改变成5列矩阵,-1表示自动计算行数
print(u.size(),s.size()) # torch.Size([15]) torch.Size([3, 5])
相关推荐
2501_9418043216 分钟前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch19 分钟前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
档案宝档案管理37 分钟前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (二)循环神经网络
深度学习·ai
wenzhangli71 小时前
Ooder A2UI 框架中的矢量图形全面指南
人工智能
躺柒1 小时前
读共生:4.0时代的人机关系07工作者
人工智能·ai·自动化·人机交互·人机对话·人机关系
码丽莲梦露1 小时前
ICLR2025年与运筹优化相关文章
人工智能·运筹优化
ai_top_trends1 小时前
2026 年度工作计划 PPT 模板与 AI 生成方法详解
人工智能·python·powerpoint
小真zzz1 小时前
2025年度AIPPT行业年度总结报告
人工智能·ai·powerpoint·ppt·aippt
村口曹大爷2 小时前
2026年人工智能深度技术报告:架构范式转移、代理化开发生态与算力经济的重构
人工智能·重构·架构