
视频链接:bilibili
文章目录
-
-
- [1. LLM Fine-Tuning](#1. LLM Fine-Tuning)
-
- [1.1 Supervised Fine-Tuning (SFT)](#1.1 Supervised Fine-Tuning (SFT))
- [1.2 Reinforcement Learning from Human Feedback (RLHF)(重点)](#1.2 Reinforcement Learning from Human Feedback (RLHF)(重点))
- [1.3 Parameter Efficient Fine-Tuning (PEFT)(重点)](#1.3 Parameter Efficient Fine-Tuning (PEFT)(重点))
-
- [1.3.1 BitFit](#1.3.1 BitFit)
- [1.3.2 TinyTL: Lite Residual Learning](#1.3.2 TinyTL: Lite Residual Learning)
- [1.3.3 Adapter](#1.3.3 Adapter)
- [2. Multi-modal LLMs](#2. Multi-modal LLMs)
-
- [2.1 Cross-Attention Based: Flamingo](#2.1 Cross-Attention Based: Flamingo)
- [2.2 Visual Tokens as Input: PaLM-E, VILA](#2.2 Visual Tokens as Input: PaLM-E, VILA)
- [2.3 Enabling Visual Outputs: VILA-U](#2.3 Enabling Visual Outputs: VILA-U)
- [3. Prompt Engineering](#3. Prompt Engineering)
-
- [3.1 In-Context Learning (ICL)](#3.1 In-Context Learning (ICL))
- [3.2 Chain-of-Thought (CoT)](#3.2 Chain-of-Thought (CoT))
- [3.3 Retrieval Augmented Generation (RAG)](#3.3 Retrieval Augmented Generation (RAG))
-
1. LLM Fine-Tuning
1.1 Supervised Fine-Tuning (SFT)


1.2 Reinforcement Learning from Human Feedback (RLHF)(重点)





1.3 Parameter Efficient Fine-Tuning (PEFT)(重点)
1.3.1 BitFit



1.3.2 TinyTL: Lite Residual Learning

1.3.3 Adapter


