VLM细粒度识别新范式!快慢思考赋能、无需训练、不建样本库!让CLIP细粒度识别精度暴涨15个点

细粒度识别准确率低?完整原文见链接:如何提升 VLM 的细粒度识别能力呢?

视觉语言模型在图像描述、图文检索等任务中展现了强大的通用视觉识别能力。但当面对"苹果手机"与"三星手机"这类细微差异时,它的回答可能就不那么靠谱了。

以业界标杆CLIP为例,其表现揭示了一个惊人反差:在CIFAR10粗粒度数据集上达到90%准确率,而在CUB-200鸟类细粒度数据集上骤降至仅50%。即使是专攻细粒度的SigLIP,在CUB-200上的表现也止步于70%左右。

更深入的分析揭示了一个关键发现:虽然这些模型的Top-1准确率不尽如人意,但它们的Top-10准确率却能突破90%。这意味着VLM能够圈定正确范围,却难以在相似选项中做出最终抉择。

那如果把模型换成你,你会怎么处理?人类通常不会直接给出答案,而是经历一个自然的认知过程:首先是快速筛查,先确定这大概是某种鸟,然后再精细观察"喙的形状、羽毛纹路",通过细微特征的比对做出最终判断。

这一过程恰好对应认知科学中的"双系统理论":系统1:直觉快速,基于经验快速反应,但容易出错,系统2:深思熟虑,通过逻辑分析做出精准判断,但需要时间。

而当前VLM的表现完美对应了"系统1"的特征:能够快速识别出合理的候选类别子集,却缺乏"系统2"的精细辨别能力,导致在相似类别间频繁出错。

来自四川大学与南洋理工大学的研究团队提出了一种无需训练、不依赖标注数据或是参考样本、在推理时即插即用的 VLM 增强方法,从而补上精细思考模块,实现从大致正确到精确识别的跨越。

论文及源码可查看原文:VLM细粒度识别新范式!

相关推荐
guoketg5 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
永远在Debug的小殿下5 小时前
SLAM开发环境(虚拟机的安装)
人工智能
MF_AI5 小时前
大型烟雾火灾检测识别数据集:25w+图像,2类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉
百家方案5 小时前
航空港应急安全科教园区 — 应急安全产业园建设项目投标技术方案
人工智能·智慧园区
奔跑草-5 小时前
【AI日报】每日AI最新消息2026-01-06
人工智能·github
雨大王5125 小时前
工业AI大模型优化汽车生产排产:技术原理与实践案例
人工智能·汽车
byzh_rc5 小时前
[机器学习-从入门到入土] 拓展-最小二乘法
人工智能·机器学习·最小二乘法
阿里巴啦5 小时前
React+go实现AI 图像生成落地实践:文生图、图生图的工程项目
人工智能·react.js·ai作画·七牛云·ai生图·ai图生图
Codebee5 小时前
AI 时代的人机协同:在智慧与执行之间寻找平衡
人工智能
love530love5 小时前
EPGF 新手教程 12在 PyCharm(中文版 GUI)中创建 Poetry 项目环境,并把 Poetry 做成“项目自包含”(工具本地化为必做环节)
开发语言·ide·人工智能·windows·python·pycharm·epgf