[机器学习-从入门到入土] 词嵌入

[机器学习-从入门到入土] 词嵌入

个人导航

知乎:https://www.zhihu.com/people/byzh_rc

CSDN:https://blog.csdn.net/qq_54636039

注:本文仅对所述内容做了框架性引导,具体细节可查询其余相关资料or源码

参考文章:各方资料

文章目录

词嵌入Word Embedding

神经网络只能处理数值向量,因此必须先把词映射为向量

具有相同含义的词语会获得相似的表示

大多数神经网络难以有效处理非常高维且稀疏的向量

-> 使用低维且稠密的向量

词袋模型(bag-of-words)(BOW)

计每个单词出现的次数,将任意文本转换为固定长度向量的表示方法

  • 词表大小 = V V V
  • 每个文本 → 一个 V V V 维向量
  • 每一维表示某个词出现的次数

问题 1:极度稀疏

  • 一个句子只包含极少数词
  • 向量中几乎全是 0

问题 2:没有语义结构

  • "king" 与 "queen" 在向量空间中正交
  • "king" 和 "apple" 距离一样远

Word Embedding 的目标: 用低维、稠密的连续向量表示词,并让"语义相近的词在向量空间中距离更近"

Word2Vec

词的含义来自它的上下文

-> 语义相似的词会出现在相似的上下文中

Skip-gram:

给定语料:"the king loves the queen"

以窗口大小 c = 2 c=2 c=2 为例:当中心词是 king, 要预测the, loves

于是训练样本变成:
( king → the ) , ( king → loves ) (\text{king} \rightarrow \text{the}),\quad (\text{king} \rightarrow \text{loves}) (king→the),(king→loves)

Skip-gram 的目标函数(最大化):
1 T ∑ t = 1 T ∑ − c ≤ j ≤ c , j ≠ 0 log ⁡ p ( w t + j ∣ w t ) \frac{1}{T}\sum_{t=1}^{T}\sum_{-c\leq j\leq c,j\neq 0}\log p\left(w_{t+j}\mid w_{t}\right) T1t=1∑T−c≤j≤c,j=0∑logp(wt+j∣wt)

  • T T T:语料中词的总数
  • w t w_t wt:中心词
  • w t + j w_{t+j} wt+j:上下文词
  • 目标 :给定中心词 w t w_t wt,最大化真实上下文词出现的概率

Skip-gram 的概率模型:(Softmax)
p ( w O ∣ w I ) = exp ⁡ ( v w O ′ ⊤ v w I ) ∑ w = 1 W exp ⁡ ( v w ′ ⊤ v w I ) p\left(w_{O}\mid w_{I}\right) =\frac{\exp\left(v_{w_{O}}^{\prime\top} v_{w_{I}}\right)} {\sum_{w=1}^{W}\exp\left(v_{w}^{\prime\top} v_{w_{I}}\right)} p(wO∣wI)=∑w=1Wexp(vw′⊤vwI)exp(vwO′⊤vwI)

  • v w I v_{w_I} vwI:输入词向量(中心词)

  • v w O ′ v'_{w_O} vwO′:输出词向量(上下文词)

  • 训练结束后:通常只保留 v w v_w vw 作为词嵌入

也有: King - man +woman -> Queen

说明能学到单词之间的逻辑关系

维度 BOW Word2Vec
向量维度 词表大小(上万) 低维(50--300)
稀疏性 极稀疏 稠密
是否学习 ❌ 固定编码 ✅ 从数据中学
语义相似性 ❌ 无 ✅ 有
词间关系 ✅(向量运算)
相关推荐
Elastic 中国社区官方博客12 分钟前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
张祥64228890420 分钟前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
2501_933329551 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI1 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅1 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛1 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID2 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20202 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie2 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具