二元分类,机器学习为什么可行?

背景

为什么我们说机器学习一定能从我们数据集中学到东西,有无理论证明?

霍夫丁不等式

为了证明这个问题,于是有了霍夫丁不等式。

对于一个固定的假设 h,只要训练数据足够多(N 大),训练误差大概率接近真实误差。

问题

但这只能保证单个固定假设,而我们训练时会从假设集中选择表现最好的那个!

但是当前表现最好的就一定是最接近f(x)的吗?

好的h 总是相似的,不好的h各有各的不好

对于单个的h,我们无法确定其距离真实的f(x)相差多少,无法评判h的好坏。但是如果对于一群h(后续写作H),我们就能评判其好坏,因为好的h总是相似的,不好的h各有各的不好。

以一个笛卡尔乘积的形式列下来,只要有一个h在Di中犯了错,那么就认为最终的h all是坏的情况。所以我们可以得到:Ph_i <= Ph_all <= |H| * 2e(-2N(期望^2))。

其中:|H|所表达的意义就是所有可能的h的个数

不过:H****不是训练过程中选出来的,而是在训练之前就由模型架构确定的

模型设计 = 设计****H ,模型训练 = H中选****h。VC维理论告诉我们如何根据数据量来设计合适的H,从而保证学习可行。

H****分类无限转有限

进一步推导,以线性分类器为例。

增加一个数据点则可以拿到四类曲线,我们可以归类出来了2^N这个指数级别函数了。分母指数级别递增增长,因此无上界限,所以我们无法确定这个坏事情发生的概率是否会随着N的增加而变小,所以我们要继续推导,能否把2^N****降级

不等式右界降级

但其实我们继续往后推理,会发现其实并不会永远遵循2^N的规律,

往后继续推论我们可以知道这样的h个数是**不会超过N^(k-1)的,至此,我们已经证明了 霍夫丁不等式**式子是可行的了,**随着N****数据集的增多,我们训练出来的模型表现坏的概率就越小**

最后得到式子如下,记住结论即可。

**VC **

对于线性分类器(d维):dVC=d+1

VC维的深刻意义

d是空间维度

上图中,在d+2组之前,存在某种情况可以使得所有的向量都是线性无关的(数学意义就是在整个空间中所有的点都能被d+2组之前的向量所表示),所以加入的d+2组数据,一定是能被目前空间中的数据所表示的,那么就表示这不是新的一类数据(也就无法被h函数所分割,无法产生新的h函数)。

d+1分别代表的含义如下

总结

因此,机器学习可行的充要条件是:

  1. 存在Break Point k(即VC维有限)

  2. 有足够多的数据N,使得指数衰减压倒多项式增长

Appendix

哔哩哔哩王木头

相关推荐
武子康几秒前
大数据-206 用 NumPy 矩阵乘法手写多元线性回归:正规方程、SSE/MSE/RMSE 与 R²
大数据·后端·机器学习
爱喝可乐的老王9 分钟前
机器学习的建模流程与特征工程
人工智能·机器学习
罗小罗同学9 分钟前
使用病理诊断报告去逐步引导AI,模仿医生的分层诊断思维,突破病理切片模糊类别边界、细微形态差异识别上的瓶颈
人工智能·数据挖掘·医学图像处理·病理ai·医学ai
kisshuan1239628 分钟前
基于YOLOv5的熊猫个体识别与分类系统_2
yolo·计算机视觉·分类
duyinbi751729 分钟前
油茶果壳籽质量分类检测:基于YOLOv8-NMSFree的创新方案_1
yolo·分类·数据挖掘
爱喝可乐的老王30 分钟前
机器学习方法分类
人工智能·机器学习
计算机程序设计小李同学1 小时前
森林防火航空巡护任务管理系统
java·vue.js·人工智能·分类·数据挖掘
WJSKad12351 小时前
如何构建yolov8-seg-bifpn污水管道分类系统 空管道_污水管道_水管三种类型识别_1
yolo·分类·数据挖掘
邴越1 小时前
深度解析TikTok运营的流量池推荐算法
算法·机器学习·推荐算法
白狐_7981 小时前
【华为认证】HCIP-AI V1.0 深度进阶:应用运营、未来展望与考前终极保过指南
大数据·人工智能·机器学习·ai·华为认证