【南京大学-李文斌-arXiv25】超高分辨率遥感多模态大语言模型基准测试


文章:A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs

代码:https://github.com/Yunkaidang/RSHR

单位:南京大学


一、问题背景:现有基准的四大"硬伤"

  1. 分辨率严重脱节:多数遥感基准用512×512或1024×1024的小图,与真实卫星/无人机拍摄的4K+超高清图像差距巨大,无法测试模型对大场景的理解能力。

  2. 语言先验干扰严重:很多问题不用看图像,纯文本模型靠常识就能答对------比如某基准中纯文本模型推理准确率达51.6%,甚至超过了多模态模型的45.2%,根本测不出真实视觉理解能力。

  3. 任务设计单一:大多局限于单轮选择题,缺乏多轮对话、多图对比等真实遥感分析场景,实用性不足。

  4. 缺乏严格校验:大量问答对自动生成,没有经过人工审核,存在"图像中明明只有10辆车,答案却写300辆"的离谱情况。

二、方法创新:RSHR-Bench的三大核心突破

1. 超高清图像 corpus 构建

精选5329张全场景遥感图像,长边均≥4000像素,最高达3亿像素(300MP),涵盖卫星影像、无人机航拍等真实数据源,完整保留原生分辨率和场景上下文。

2. 多元任务体系设计

包含四大任务家族,覆盖9类感知任务(颜色识别、形状判断、计数等)和4类推理任务(异常检测、未来预测等),支持多轮对话和多图对比,完美贴合实际应用场景:

  • 选择题问答:固定选项测试决策能力

  • 开放式问答:无选项约束,考验自由表达与理解

  • 图像描述:要求精准描述全局与区域细节

  • 单图综合评估:每图配10个问题,全面考核感知与推理

3. 双阶段校验确保质量

先通过纯文本大模型进行"对抗性过滤",剔除无需图像就能解答的问题;再经6名专业标注员300小时人工审核,修正歧义、确保答案必须依赖视觉信息,最终形成高质量问答对超1.2万条。

三、实验结果:现有模型集体"露短板"

测试了14款主流模型(含通用大模型GPT-4o、遥感专用模型GeoLLaVA-8K等),结果令人意外:

  1. 整体表现拉胯:所有模型在四大任务中准确率普遍偏低,纯文本模型仍能靠常识答对30%以上推理题,凸显现有模型对超高清遥感场景的适配不足。

  2. 短板集中凸显:计数、小目标识别、多区域对比任务表现最差,超高清图像下模型检测召回率大幅下降。

  3. 闭源模型略胜一筹:GPT-5、GPT-4o等闭源模型在推理任务中准确率领先(最高74%),但与人类92.94%的准确率仍有巨大差距;开源模型平均准确率仅25%左右, compositional reasoning 能力严重不足。

四、优势与局限

核心优势

  • 分辨率保真:首次实现亿级像素图像的标准化评测,贴合真实应用场景。

  • 任务全面:覆盖从基础感知到复杂推理的全链路能力,支持多轮/多图交互。

  • 质量可控:LLM+人工双校验,彻底摆脱语言先验干扰,评测结果更可信。

现存局限

  • 数据来源仍有拓展空间:虽包含卫星、无人机数据,但特定场景(如极地、海洋)覆盖不足。

  • 模型适配成本高:超高清图像对模型算力和输入处理能力要求极高,部分开源模型因显存限制无法充分测试。

  • 暂无动态场景数据:缺乏时序变化的遥感图像,无法评估模型对场景演变的跟踪能力。

五、一句话总结

RSHR-Bench填补了超高清遥感多模态模型评测的空白,用严格的设计和真实的场景,揭示了当前大模型的能力短板,为后续技术突破提供了可靠的"风向标"。

相关推荐
roman_日积跬步-终至千里7 分钟前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉
春日见31 分钟前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术39 分钟前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
hjs_deeplearning41 分钟前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy1 小时前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
副露のmagic1 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc1 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
代码丰1 小时前
SpringAI+RAG向量库+知识图谱+多模型路由+Docker打造SmartHR智能招聘助手
人工智能·spring·知识图谱
独处东汉2 小时前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
乐迪信息2 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机