面试题:大模型训练需要设置温度系数吗?

我整理好的1000+面试题,请看
大模型面试题总结-CSDN博客

或者

https://gitee.com/lilitom/ai_interview_questions/blob/master/README.md

最好将URL复制到浏览器中打开,不然可能无法直接打开


好了,我们今天针对上面的问题,

大模型训练需要设置温度系数吗?

那肯定是不需要的,当然,面试官会总推理的环节出发先问你推理这块需不需要设置温度系数,然后再过度到问你训练环节需不需要。其实在训练中,温度系数为1,可以理解为不需要设置。

我们直接打开千问3的源码看一看,https://github.com/huggingface/transformers/blob/52c5c6582bdef8bd0f0a9238c9d6703137a10583/src/transformers/models/qwen3/modeling_qwen3.py#L197

也即:

看到是没有温度的。

具体softmax是怎么算的可以看下面(对此知道的可以不用看了):

LLMs 几乎总是出于实际原因输出未缩放的 logits(原始分数),而不是直接输出概率。这只是意味着输出可以是负无穷到正无穷之间的任何值,而不是像概率那样在0到1之间,并且原始分数与其重要性成正比:例如,值100比值3重要得多。为了获得实际概率,这些原始分数随后使用 softmax 函数进行指数化和归一化:

其中下一个 token i 的概率 P(token_i) 是指数化的原始分数,归一化后除以所有不同可用 token 的所有指数化原始分数的总和。具体而言,在"I went to the park and saw a..."的例子中,我们可以计算 P(dog) 为:

指数化有几个实际用途:

  1. 指数化保证正值:由于概率必须是非负的且总和为1,指数化确保 softmax 函数的所有输出都是正值。

  2. 指数化增强差异:指数函数增长迅速,这意味着即使 logits 的微小差异也可能导致最终概率的显著差异。例如,如果一个 logit 比其他 logit 稍大,其指数化值将主导分母中的总和,导致该类别获得高得多的概率。例如,e^4 ≈ 54.6,而 e^4.1 ≈ 60.3。

相关推荐
人道领域几秒前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱4 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能
qq_124987075322 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_25 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
L、21826 分钟前
CANN 中的图优化技术详解:如何让 AI 模型跑得更快、更省
人工智能
大模型玩家七七27 分钟前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
新缸中之脑29 分钟前
像画家一样编程
人工智能
tq108631 分钟前
心主神明:传统智慧如何启示AI的可靠之道
人工智能
珠海西格电力科技34 分钟前
微电网能量平衡理论的实现条件在不同场景下有哪些差异?
运维·服务器·网络·人工智能·云计算·智慧城市
新缸中之脑36 分钟前
“AI 裁员“神话
人工智能