面试题:大模型训练需要设置温度系数吗?

我整理好的1000+面试题,请看
大模型面试题总结-CSDN博客

或者

https://gitee.com/lilitom/ai_interview_questions/blob/master/README.md

最好将URL复制到浏览器中打开,不然可能无法直接打开


好了,我们今天针对上面的问题,

大模型训练需要设置温度系数吗?

那肯定是不需要的,当然,面试官会总推理的环节出发先问你推理这块需不需要设置温度系数,然后再过度到问你训练环节需不需要。其实在训练中,温度系数为1,可以理解为不需要设置。

我们直接打开千问3的源码看一看,https://github.com/huggingface/transformers/blob/52c5c6582bdef8bd0f0a9238c9d6703137a10583/src/transformers/models/qwen3/modeling_qwen3.py#L197

也即:

看到是没有温度的。

具体softmax是怎么算的可以看下面(对此知道的可以不用看了):

LLMs 几乎总是出于实际原因输出未缩放的 logits(原始分数),而不是直接输出概率。这只是意味着输出可以是负无穷到正无穷之间的任何值,而不是像概率那样在0到1之间,并且原始分数与其重要性成正比:例如,值100比值3重要得多。为了获得实际概率,这些原始分数随后使用 softmax 函数进行指数化和归一化:

其中下一个 token i 的概率 P(token_i) 是指数化的原始分数,归一化后除以所有不同可用 token 的所有指数化原始分数的总和。具体而言,在"I went to the park and saw a..."的例子中,我们可以计算 P(dog) 为:

指数化有几个实际用途:

  1. 指数化保证正值:由于概率必须是非负的且总和为1,指数化确保 softmax 函数的所有输出都是正值。

  2. 指数化增强差异:指数函数增长迅速,这意味着即使 logits 的微小差异也可能导致最终概率的显著差异。例如,如果一个 logit 比其他 logit 稍大,其指数化值将主导分母中的总和,导致该类别获得高得多的概率。例如,e^4 ≈ 54.6,而 e^4.1 ≈ 60.3。

相关推荐
独处东汉24 分钟前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
乐迪信息27 分钟前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
风栖柳白杨34 分钟前
【语音识别】soundfile使用方法
人工智能·语音识别
胡西风_foxww35 分钟前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书
Hernon35 分钟前
AI智能体 - 探索与发现 Clawdbot >> Moltbot
大数据·人工智能·ai智能体·ai开发框架
输出的都是我的35 分钟前
科研-工具箱汇总
人工智能
昨夜见军贴06161 小时前
IACheck AI审核功能进化新维度:重构检测报告审核技术价值链的系统路径
人工智能·重构
好奇龙猫1 小时前
【人工智能学习-AI入试相关题目练习-第十二次】
人工智能·学习
tzc_fly1 小时前
IEEE TPAMI 2026 | ConsistID:多模态高保真肖像生成
人工智能
7***n751 小时前
2026年GEO深度评测:AI时代营销新基建的实践者与分化
大数据·人工智能