OpenCV视频实时跟踪目标,多种算法,python版

  • 测试结果

同等条件下对比:

复制代码
        'csrt',       # 261.0ms, lost 0
        'kcf',        #  51.0ms, lost 157
        'boosting',   #  23.7ms, lost 0
        'mil',        # 273.1ms, lost 0
        'tld',        # 100.7ms, lost 0
        'medianflow', #   6.6ms, lost 37
        'mosse'       #  10.7ms, lost 158
  • 具体代码

    import cv2
    import time

    def init_tracker(frame):
    # 创建跟踪器
    if tracker_index == 0:
    tracker = cv2.legacy.TrackerCSRT_create()
    elif tracker_index == 1:
    tracker = cv2.legacy.TrackerKCF_create()
    elif tracker_index == 2:
    tracker = cv2.legacy.TrackerBoosting_create()
    elif tracker_index == 3:
    tracker = cv2.legacy.TrackerMIL_create()
    elif tracker_index == 4:
    tracker = cv2.legacy.TrackerTLD_create()
    elif tracker_index == 5:
    tracker = cv2.legacy.TrackerMedianFlow_create()
    elif tracker_index == 6:
    tracker = cv2.legacy.TrackerMOSSE_create()

    复制代码
      height, width = frame.shape[:2]
      bbox   = [int(width*(1-check_ratio)/2), int(height*(1-check_ratio)/2), width*check_ratio, height*check_ratio]
    
      # 初始化跟踪器
      ok = tracker.init(frame, bbox)
    
      return tracker, bbox

    def track_action(tracker, frame):
    current_time = time.time()

    复制代码
      result = frame.copy()
      
      # 更新跟踪器,获取新边界框
      ok, bbox = tracker.update(result)
    
      lost = 0
      if ok:
          # 跟踪成功:绘制边界框
          (x, y, w, h) = [int(v) for v in bbox]
          cv2.rectangle(result, (x, y), (x+w, y+h), (0, 255, 0), 2)
      else:
          # 跟踪失败
          lost = 1
          cv2.putText(result, "Tracking failure", (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255), 2)
      cost_time = (time.time()-current_time)
      return result, cost_time, lost

    def track_video(input_video, output_video):

    复制代码
      # 读取视频
      input = cv2.VideoCapture(input_video)
      ok, frame = input.read()
      if not ok:
          print("Cannot read video")
          return
    
      fps    = int(input.get(cv2.CAP_PROP_FPS))
      width  = int(input.get(cv2.CAP_PROP_FRAME_WIDTH))
      height = int(input.get(cv2.CAP_PROP_FRAME_HEIGHT))
      
      tracker, bbox = init_tracker(frame)
    
      fourcc = cv2.VideoWriter_fourcc(*'mp4v')
      output = cv2.VideoWriter(output_video, fourcc, fps, (width*2, height))
    
      frame_counter = 0
      track_lost    = 0
      work_cost     = 0
      while True:
          ok, frame = input.read()
          if not ok:
              break
    
          frame_counter += 1
    
          track_frame, cost, lost = track_action(tracker, frame)
      
          work_cost  += cost
          track_lost += lost
          
          if (merge_video):
              track = cv2.hconcat([frame, track_frame])
          output.write(track)
      
          if (frame_counter % 100 == 0):
              print(frame_counter)
    
      print('tracker(%s): cost per frame(ms)=%.2f' % (tracker_names[tracker_index], (work_cost/frame_counter*1000)))
      print('tracker(%s): track(lost/total)=%d/%d'  % (tracker_names[tracker_index], track_lost, frame_counter))
      
      output.release()
      input.release()

    跟踪器类型, total 527 frames

    tracker name, cost per frame(ms), lost

    tracker_names = [
    'csrt', # 261.0ms, lost 0
    'kcf', # 51.0ms, lost 157
    'boosting', # 23.7ms, lost 0
    'mil', # 273.1ms, lost 0
    'tld', # 100.7ms, lost 0
    'medianflow', # 6.6ms, lost 37
    'mosse' # 10.7ms, lost 158
    ]

    merge_video = True
    check_ratio = 1/10
    tracker_index = 0

    input_video = 'test.mp4'
    output_video = 'track.mp4'

    for index in range(7):
    tracker_index = index
    output_video = ("track%d.mp4" % tracker_index)
    track_video(input_video, output_video)

相关推荐
朱峥嵘(朱髯)18 小时前
数据库如何根据估计 NDV,以及通过分区 NDV 推导全局 NDV
数据库·算法
山上三树18 小时前
详细介绍 C 语言 typedef 及与 #define 的核心对比
c语言·数据结构·算法
释怀°Believe18 小时前
Daily算法刷题【面试经典150题-7️⃣位运算/数学/】
算法·面试·职场和发展
Facechat18 小时前
视频混剪-撤销/重做系统
音视频
心动啊12118 小时前
简单了解下音频和VAD
音视频
2401_8762213418 小时前
因数个数、因数和、因数积
c++·算法
云里雾里!19 小时前
LeetCode 744. 寻找比目标字母大的最小字母 | 从低效到最优的二分解法优化
算法·leetcode
一条大祥脚19 小时前
26.1.3 快速幂+容斥 树上dp+快速幂 带前缀和的快速幂 正序转倒序 子序列自动机 线段树维护滑窗
数据结构·算法
程序员哈基耄19 小时前
小红书在线去水印工具:一键下载高清无水印图片与视频
音视频