每天写点什么2026-01-10-深度学习和网络原理

神经网络的基本组成

神经网络由多个相互连接的神经元组成,通常分为输入层、隐藏层和输出层。输入层接收原始数据,隐藏层负责特征提取和转换,输出层生成最终预测或分类结果。每一层的神经元通过权重和偏置参数连接,形成复杂的非线性映射关系。

神经元模型

单个神经元是神经网络的基本计算单元,其数学表达式为:
z = ∑ i = 1 n w i x i + b z = \sum_{i=1}^n w_i x_i + b z=i=1∑nwixi+b

其中 w i w_i wi 是权重, x i x_i xi 是输入, b b b 是偏置。神经元的输出通过激活函数 a = σ ( z ) a = \sigma(z) a=σ(z) 进行非线性变换,常见激活函数包括 Sigmoid、ReLU 和 Tanh。

前向传播过程

数据从输入层流向输出层的过程称为前向传播。每一层的计算可以表示为:
a ( l ) = σ ( W ( l ) a ( l − 1 ) + b ( l ) ) \mathbf{a}^{(l)} = \sigma(\mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}) a(l)=σ(W(l)a(l−1)+b(l))

其中 W ( l ) \mathbf{W}^{(l)} W(l) 是第 l l l 层的权重矩阵, a ( l − 1 ) \mathbf{a}^{(l-1)} a(l−1) 是上一层的输出, b ( l ) \mathbf{b}^{(l)} b(l) 是偏置向量。

反向传播算法

通过计算损失函数对参数的梯度,反向传播算法从输出层向输入层逐层调整权重和偏置。梯度下降公式为:
W ← W − η ∂ L ∂ W \mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial L}{\partial \mathbf{W}} W←W−η∂W∂L

其中 η \eta η 是学习率, L L L 是损失函数。链式法则用于高效计算各层梯度。

常见网络结构类型

全连接网络是最基础的架构,所有相邻层神经元两两相连。卷积神经网络(CNN)通过局部连接和权重共享处理网格数据,循环神经网络(RNN)则利用时序信息处理序列数据。Transformer 结构通过自注意力机制实现长距离依赖建模。

参数初始化方法

权重初始化影响训练效果,常用方法包括 Xavier 初始化:
W ∼ N ( 0 , 2 n i n + n o u t ) W \sim \mathcal{N}(0, \sqrt{\frac{2}{n_{in} + n_{out}}}) W∼N(0,nin+nout2 )

和 He 初始化:
W ∼ N ( 0 , 2 n i n ) W \sim \mathcal{N}(0, \sqrt{\frac{2}{n_{in}}}) W∼N(0,nin2 )

其中 n i n n_{in} nin 和 n o u t n_{out} nout 分别表示输入和输出的神经元数量。

正则化技术

为防止过拟合,常用技术包括 L2 正则化:
L r e g = L + λ 2 ∥ W ∥ 2 L_{reg} = L + \frac{\lambda}{2} \|\mathbf{W}\|^2 Lreg=L+2λ∥W∥2

Dropout 在训练时随机屏蔽部分神经元,Batch Normalization 则对层输入进行标准化处理。

优化算法

随机梯度下降(SGD)是基础优化方法,改进算法如 Momentum 引入历史梯度信息:
v t = γ v t − 1 + η ∇ θ J ( θ ) v_t = \gamma v_{t-1} + \eta \nabla_\theta J(\theta) vt=γvt−1+η∇θJ(θ)

Adam 结合了动量和自适应学习率,成为当前主流选择。学习率调度器可动态调整学习率提升训练效果。神经网络基本结构

相关推荐
dajun1811234568 小时前
跨部门工作流泳道图在线绘制工具 PC
大数据·数据库·人工智能·信息可视化·架构·流程图
王夏奇8 小时前
python在汽车电子行业中应用2—具体包的介绍和使用
网络·python·汽车
HZZD_HZZD8 小时前
喜讯|合众致达成功中标G312线傅家窑至苦水公路机电工程FKJD-2标水电表项目
大数据·数据库·人工智能
paixingbang8 小时前
GEO优化服务商领域崛起三强 自主技术驱动AI搜索与位置智能升级
大数据·人工智能
不知疲倦的仄仄8 小时前
第四天:Netty 核心原理深度解析&EventLoop、Future/Promise 与 Pipeline
linux·服务器·网络
橘颂TA8 小时前
【Linux 网络编程】网络是怎么 “跑” 起来的?从协议入门到 TCP/ IP 模型的底层逻辑
linux·运维·服务器·网络
Luhui Dev8 小时前
当模型“知道自己在作弊”:Scheming 与 Reward Hacking 的技术解剖
人工智能
MOON404☾8 小时前
004.漏洞分析与利用
前端·网络·网络安全·系统安全·firefox
AI数据皮皮侠8 小时前
全球首个30米分辨率湿地数据集(2000—2022)
大数据·人工智能