很多LLM是开源的,是可以自己下载模型,运行调试的。
下载模型:https://www.modelscope.cn/models/Qwen/Qwen3-0.6B/files
代码: 上面只是模型的权重,词表等文件,代码是在transform库中的
首先,查找模型的class名称
bash
Qwen3-8B# cat config.json
{
"architectures": [
"Qwen3ForCausalLM"
],
然后在python 包中找这个类
bash
(gaofeng1120) qwen3$ pwd
/home/gaofeng/anaconda3/envs/gaofeng1120/lib/python3.10/site-packages/transformers/models/qwen3
(gaofeng1120) qwen3$ ls
configuration_qwen3.py __init__.py modeling_qwen3.py modular_qwen3.py __pycache__
(gaofeng1120) qwen3$ cat modeling_qwen3.py |grep "class Qwen3ForCausalLM"
class Qwen3ForCausalLM(Qwen3PreTrainedModel, GenerationMixin):
调试:
例如使用Hugging Face的Transformers库, 在cpu下也可以调试
python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-0.6B"
model_name = "/home/qwen3-0.6B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
while True:
prompt = "勾股定理有多少种证明方法?"
#prompt = input("please input:")
if prompt == 'exit':
break
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)