
前言
NewBie-image-Exp0.1 是一款基于 Next-DiT 架构的 3.5B 参数动漫图像生成模型。它支持 XML 结构化提示词,在多角色控制和属性绑定上表现卓越。部署 NewBie-image-Exp0.1 具有一定的挑战性,因为它不仅涉及多个顶尖模型(Gemma 3, Jina CLIP, Flux VAE)的组合,其源码在适配 Diffusers 格式推理时也存在一些维度和类型的硬伤。
以下是我整理的部署教学博客,旨在帮助大家一键式避坑。
本教程将带你解决源码中的"浮点数索引"、"维度不匹配"、"数据类型冲突"等所有核心 Bug,实现稳定生成。
1. 硬件要求与环境准备
- 显存:建议 16GB 以上(模型+编码器约占用 14-15GB)。
- 系统:Linux (推荐) / Windows。
- 基础环境:Python 3.10+, PyTorch 2.4+, CUDA 12.1+。
安装核心依赖
bash
pip install transformers accelerate safetensors diffusers timm torchdiffeq gradio
# 卸载可能导致版本冲突的 xformers
pip uninstall xformers -y
# 安装项目提供的 Flash-Attention wheel (根据你的环境选择)
pip install flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp311-cp311-linux_x86_64.whl
在部署教学博客中,补充"如何通过 wget 下载并进行本地 pip 安装"这一部分非常重要,特别是在处理 GitHub 连接不稳定或受限的服务器环境时。
以下是为你整理的补充章节建议,你可以直接加入到博客的"环境准备"部分:
补充技巧:受限环境下下载与本地安装
在许多云服务器(如 AutoDL、各厂 AI 算力平台)中,直接通过 pip install git+... 或从 GitHub 下载往往会遇到连接超时或 SSL 握手失败。此时,建议采用"本地中转安装"法。
1. 使用 wget 下载特定组件
如果直接下载报错,可以使用代理前缀(如 gh-proxy.com)并加上 --no-check-certificate 参数来忽略 SSL 证书校验。
下载 Flash-Attention 预编译包(示例):
bash
# 格式:wget [代理前缀][原始GitHub链接]
wget --no-check-certificate https://mirror.ghproxy.com/https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp311-cp311-linux_x86_64.whl
下载模型源码压缩包:
bash
wget --no-check-certificate https://mirror.ghproxy.com/https://github.com/NewBieAI-Lab/diffusers/archive/refs/heads/add-newbie-pipeline.zip
2. 本地执行 pip 安装
当 .whl 离线包或 .zip 源码包下载到本地目录后,使用 pip 进行本地路径安装,这样可以彻底避开安装过程中的网络波动。
-
安装
.whl离线包:bash# 直接指定文件名安装 pip install flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp311-cp311-linux_x86_64.whl -
安装下载好的源码包:
bash# 1. 解压 unzip add-newbie-pipeline.zip # 2. 进入解压后的目录 cd diffusers-add-newbie-pipeline # 3. 以可编辑模式安装当前目录内容 pip install -e .
提示 :在博客中建议提醒读者,安装完本地包后,可以使用 pip cache purge 清理缓存,以节省宝贵的系统盘空间。
2. 获取源码与权重
-
克隆代码库 :
bashgit clone https://github.com/NewBieAI-Lab/NewBie-image-Exp0.1.git cd NewBie-image-Exp0.1 -
下载权重 :从 HuggingFace 下载 NewBie-image-Exp0.1,确保目录结构包含
transformer,text_encoder,vae,clip_model。
3. 核心步骤:修复源码 Bug(自动补丁)
模型源码在处理 Diffusers 推理时有几处逻辑漏洞(浮点数作索引、张量维度未对齐等)
直接运行以下 Python 脚本自动修复 models/model.py:
python
import os
path = 'models/model.py'
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
# 修复 1:修正切片索引必须为整数的问题 (int conversion)
content = content.replace(':max_cap', ':int(max_cap)')
content = content.replace('torch.zeros(bsz, max_seq_len', 'torch.zeros(bsz, int(max_seq_len)')
content = content.replace('[:max_seq_len]', '[:int(max_seq_len)]')
# 修复 2:修复文本特征与时间特征拼接时的维度不匹配 (2D vs 1D)
old_cat = 'combined_features = torch.cat([t_emb, clip_emb], dim=-1)'
new_cat = """
if clip_emb.ndim == 1:
clip_emb = clip_emb.unsqueeze(0)
if clip_emb.shape[0] != t_emb.shape[0]:
clip_emb = clip_emb.expand(t_emb.shape[0], -1)
combined_features = torch.cat([t_emb, clip_emb], dim=-1)
"""
content = content.replace(old_cat, new_cat)
with open(path, 'w', encoding='utf-8') as f:
f.write(content)
print("✅ models/model.py 源码修复完成!")
4. 编写推理脚本 run_inference.py
这个脚本通过手动组装组件,绕过了对自定义 Diffusers 库的依赖。
python
import torch
import os
import sys
from PIL import Image
from safetensors.torch import load_file
from torchvision.transforms.functional import to_pil_image
# 确保加载本地 models 和 transport
sys.path.append(os.getcwd())
from models import NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP
from transport import Sampler, create_transport
from diffusers.models import AutoencoderKL
from transformers import AutoModel, AutoTokenizer
# --- 配置 ---
model_root = "./NewBie-image-Exp0.1" # 权重路径
device = "cuda"
dtype = torch.bfloat16
print("1. 加载文本编码器 (Gemma 3 & Jina CLIP)...")
tokenizer = AutoTokenizer.from_pretrained(f"{model_root}/text_encoder")
text_encoder = AutoModel.from_pretrained(f"{model_root}/text_encoder", torch_dtype=dtype).to(device).eval()
clip_tokenizer = AutoTokenizer.from_pretrained(f"{model_root}/clip_model", trust_remote_code=True)
clip_model = AutoModel.from_pretrained(f"{model_root}/clip_model", torch_dtype=dtype, trust_remote_code=True).to(device).eval()
print("2. 加载 VAE...")
vae = AutoencoderKL.from_pretrained(f"{model_root}/vae").to(device, dtype)
print("3. 初始化 Transformer...")
model = NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(
in_channels=16, qk_norm=True,
cap_feat_dim=text_encoder.config.text_config.hidden_size,
)
ckpt_path = f"{model_root}/transformer/diffusion_pytorch_model.safetensors"
model.load_state_dict(load_file(ckpt_path), strict=True)
model.to(device, dtype).eval()
# 准备采样器
sampler = Sampler(create_transport("Linear", "velocity"))
sample_fn = sampler.sample_ode(sampling_method="midpoint", num_steps=28, time_shifting_factor=6.0)
@torch.no_grad()
def generate(user_prompt):
system_prompt = "You are an assistant designed to generate high-quality images based on user prompts."
prompts = [system_prompt + user_prompt, " "] # 正负向 Batch=2
# 特征编码
txt_in = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
p_embeds = text_encoder(**txt_in, output_hidden_states=True).hidden_states[-2]
clip_in = clip_tokenizer(prompts, return_tensors="pt", padding=True, truncation=True).to(device)
c_res = clip_model.get_text_features(input_ids=clip_in.input_ids, attention_mask=clip_in.attention_mask)
c_pooled = c_res[0].to(dtype)
if c_pooled.ndim == 1: c_pooled = c_pooled.unsqueeze(0)
if c_pooled.shape[0] == 1: c_pooled = c_pooled.repeat(2, 1)
model_kwargs = dict(cap_feats=p_embeds, cap_mask=txt_in.attention_mask, cfg_scale=4.5,
clip_text_sequence=c_res[1].to(dtype), clip_text_pooled=c_pooled)
# 噪声生成 (1024x1024)
z = torch.randn([2, 16, 128, 128], device=device, dtype=dtype)
# 核心:robust_forward 确保 float32 采样器输入转回 bf16 兼容模型权重
def robust_forward(x, t, **kwargs):
return model.forward_with_cfg(x.to(dtype), t.to(dtype), **kwargs)
samples = sample_fn(z, robust_forward, **model_kwargs)[-1]
# VAE 解码
samples = vae.decode(samples[:1].to(dtype) / 0.3611 + 0.1159).sample
img = to_pil_image(((samples[0] + 1.0) / 2.0).clamp(0.0, 1.0).float().cpu())
return img
if __name__ == "__main__":
prompt = "<character_1><n>miku</n><gender>1girl</gender><appearance>blue_hair, long_twintails</appearance></character_1><general_tags><style>anime_style</style></general_tags>"
result = generate(prompt)
result.save("success_output.png")
print("✨ 生成成功!保存为 success_output.png")
运行代码
bash
python run_inference.py
运行结果

5. 进阶使用:对话图片生成 create.py
python
import torch
import os
import sys
import time
import builtins
from PIL import Image
from safetensors.torch import load_file
from torchvision.transforms.functional import to_pil_image
# 修复源码中的浮点数和维度 Bug 的 Monkey Patch (如果还没改源码,请保留这段)
_orig_zeros = torch.zeros
def _safe_zeros(*args, **kwargs):
new_args = list(args)
if len(args) > 0:
if isinstance(args[0], (list, tuple)):
new_args[0] = tuple(int(s) for s in args[0])
else:
for i in range(len(new_args)):
if isinstance(new_args[i], (int, float)):
new_args[i] = int(new_args[i])
elif isinstance(new_args[i], torch.Tensor) and new_args[i].ndim == 0:
new_args[i] = int(new_args[i].item())
else: break
return _orig_zeros(*new_args, **kwargs)
torch.zeros = _safe_zeros
sys.path.append(os.getcwd())
from models import NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP
from transport import Sampler, create_transport
from diffusers.models import AutoencoderKL
from transformers import AutoModel, AutoTokenizer
model_root = "./NewBie-image-Exp0.1"
device = "cuda"
dtype = torch.bfloat16
def load_all_models():
print("🚀 正在加载模型组件...")
tokenizer = AutoTokenizer.from_pretrained(f"{model_root}/text_encoder")
text_encoder = AutoModel.from_pretrained(f"{model_root}/text_encoder", torch_dtype=dtype).to(device).eval()
clip_tokenizer = AutoTokenizer.from_pretrained(f"{model_root}/clip_model", trust_remote_code=True)
clip_model = AutoModel.from_pretrained(f"{model_root}/clip_model", torch_dtype=dtype, trust_remote_code=True).to(device).eval()
vae = AutoencoderKL.from_pretrained(f"{model_root}/vae").to(device, dtype)
model = NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP(
in_channels=16, qk_norm=True,
cap_feat_dim=text_encoder.config.text_config.hidden_size,
)
ckpt_path = f"{model_root}/transformer/diffusion_pytorch_model.safetensors"
model.load_state_dict(load_file(ckpt_path), strict=True)
model.to(device, dtype).eval()
sampler = Sampler(create_transport("Linear", "velocity"))
return tokenizer, text_encoder, clip_tokenizer, clip_model, vae, model, sampler
@torch.no_grad()
def encode_prompts(user_input, tokenizer, text_encoder, clip_tokenizer, clip_model):
system_prompt = "You are an assistant designed to generate high-quality images based on user prompts."
prompts = [system_prompt + user_input, " "]
txt_in = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
outputs = text_encoder(**txt_in, output_hidden_states=True)
prompt_embeds = outputs.hidden_states[-2].to(dtype)
clip_in = clip_tokenizer(prompts, return_tensors="pt", padding=True, truncation=True).to(device)
clip_res = clip_model.get_text_features(input_ids=clip_in.input_ids, attention_mask=clip_in.attention_mask)
c_pooled = clip_res[0].to(dtype)
if c_pooled.ndim == 1: c_pooled = c_pooled.unsqueeze(0)
if c_pooled.shape[0] == 1: c_pooled = c_pooled.repeat(2, 1)
return prompt_embeds, txt_in.attention_mask, clip_res[1].to(dtype), c_pooled
def main():
tokenizer, text_encoder, clip_tokenizer, clip_model, vae, model, sampler = load_all_models()
print("\n✅ 加载完成。输入 'quit' 退出。建议使用英文或 XML 标签。")
image_count = 1
while True:
try:
# 兼容编码的输入方式
print(f"\n[{image_count}] 请输入提示词 >> ", end='', flush=True)
line = sys.stdin.buffer.readline()
if not line: break
user_input = line.decode('utf-8', errors='ignore').strip()
if user_input.lower() in ['quit', 'exit']: break
if not user_input: continue
print(f"⏳ 正在生成...")
p_embeds, p_masks, c_seq, c_pooled = encode_prompts(user_input, tokenizer, text_encoder, clip_tokenizer, clip_model)
model_kwargs = dict(cap_feats=p_embeds, cap_mask=p_masks, cfg_scale=4.5, clip_text_sequence=c_seq, clip_text_pooled=c_pooled)
z = torch.randn([2, 16, 128, 128], device=device, dtype=dtype)
def robust_forward(x, t, **kwargs):
t_input = t.to(dtype)
if t_input.ndim == 0: t_input = t_input.expand(x.shape[0])
return model.forward_with_cfg(x.to(dtype), t_input, **kwargs)
sample_fn = sampler.sample_ode(sampling_method="midpoint", num_steps=28, time_shifting_factor=6.0)
samples = sample_fn(z, robust_forward, **model_kwargs)[-1]
samples = vae.decode(samples[:1].to(dtype) / 0.3611 + 0.1159).sample
img = to_pil_image(((samples[0] + 1.0) / 2.0).clamp(0.0, 1.0).float().cpu())
save_name = f"output_{int(time.time())}.png"
img.save(save_name)
print(f"✨ 已保存为: {save_name}")
image_count += 1
except Exception as e:
print(f"❌ 错误: {e}")
if __name__ == "__main__":
main()
5. 关键避坑总结
- 参数对齐 :对于 3.5B 版本,必须使用
NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP类,它内部预设了 2304 维度,手动传hidden_size会报TypeError。 - 数据类型 (Dtype) :
torchdiffeq采样器默认使用float32计算,必须在forward入口处强制强制.to(torch.bfloat16),否则会报矩阵乘法类型不匹配错误。 - XML 提示词:该模型对 XML 标签非常敏感,推荐遵循官方格式进行多角色和属性定义,以发挥最强性能。
- Batch 防空 :推理时建议 Batch Size 设为 2(正向 + 负向),并给负向提示词一个空格
" ",防止 CLIP 编码返回空张量。
通过以上步骤,你就可以完美运行 NewBie-image-Exp0.1 了。祝你的动漫生成之旅愉快!