DAY41 简单CNN

@浙大疏锦行

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

train_transform=transforms.Compose([
    transforms.RandomCrop(32,padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
])

test_transform =transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010))
    
])

train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform  
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform  
)

batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

由于本人的cuda不可用,因此使用cpu进行计算

python 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()

        self.conv1=nn.Conv2d(
            in_channels=3,
            out_channels=32,
            kernel_size=3,
            padding=1
        )

        self.bn1=nn.BatchNorm2d(num_features=32)
        self.relu1=nn.ReLU()
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)




        self.conv2=nn.Conv2d(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            padding=1
            )
        
        self.bn2=nn.BatchNorm2d(num_features=64)
        self.relu2=nn.ReLU()
        self.pool2=nn.MaxPool2d(kernel_size=2)


        self.conv3=nn.Conv2d(
            in_channels=64,
            out_channels=128,
            kernel_size=3,
            padding=1
            )
        
        self.bn3=nn.BatchNorm2d(num_features=128)
        self.relu3=nn.ReLU()
        self.pool3=nn.MaxPool2d(kernel_size=2)

        self.fc1=nn.Linear(
            in_features=128*4*4,
            out_features=512
        )
        self.dropout=nn.Dropout(p=0.5)
        self.fc2=nn.Linear(in_features=512,out_features=10)


    def forward(self,x):
        x=self.conv1(x)
        x=self.bn1(x)
        x=self.relu1(x)
        x=self.pool1(x)

        x=self.conv2(x)
        x=self.bn2(x)
        x=self.relu(x)
        x=self.pool3(x)

        x=x.view(-1,128*4*4)

        x=self.fc1(x)
        x=self.relu3(x)
        x=self.dropout(x)
        x=self.fc2(x)

        return x

model=CNN()
model=model.to(device)
python 复制代码
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.001)

scheduler=optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,
    mode='min',
    patience=3,
    factor=0.5
)
python 复制代码
def train(model,train_loader,test_loader,criterion,optimizer,scheduler,device,epochs):
    model.train()

    all_iter_losses=[]
    iter_indices=[]

    train_acc_history=[]
    test_acc_history=[]
    train_loss_history=[]
    test_loss_history=[]

    for epoch in range(epochs):
        running_loss=0.0
        correct=0
        total=0

        for batch_idx,(data,target) in enumerate(train_loader):
            data,target=data.to(device),target.to(device)

            optimizer.zero_grad()
            output=model(data)
            loss=criterion(output,target)
            loss.backward()
            optimizer.step()

            iter_loss=loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch*len(train_loader))

            running_loss+=iter_loss
            _,predicted=output.max(1)
            total+=target.size(0)
            correct+=predicted.eq(target).sum().item()
            
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        

        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        

        model.eval() 
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        

        scheduler.step(epoch_test_loss)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    

    plot_iter_losses(all_iter_losses, iter_indices)
    

    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  


def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()


def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    

    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    

    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()


epochs = 20  
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
相关推荐
予枫的编程笔记2 小时前
【Java进阶】掌握布隆过滤器,守住高并发系统的第一道防线
人工智能
过期的秋刀鱼!2 小时前
机器学习-过拟合&欠拟合问题
人工智能·机器学习
万事可爱^2 小时前
LangChain v1.0学习笔记(4)—— 核心组件Models
人工智能·笔记·学习·langchain·大模型
Frdbio2 小时前
环腺苷酸(cAMP)ELISA检测试剂盒
linux·人工智能·python
dazzle2 小时前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
狗狗学不会2 小时前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
Aevget2 小时前
Kendo UI for jQuery 2025 Q4新版亮点 - AI 助手持续加持,主力开发更智能
人工智能·ui·jquery·界面控件·kendo ui
北京耐用通信2 小时前
耐达讯自动化CANopen转Profibus网关在矿山机械RFID读写器应用中的技术分析
人工智能·科技·物联网·自动化·信息与通信
飞睿科技2 小时前
UWB技术在机器人领域的创新应用与前景
网络·人工智能·机器人·定位技术·uwb技术