AGI 论文复现日记:从 54 到 92 分,论文复现 AI Agent 的 PDF 解析“西游记”

引言:54 分的"暴击"

在构建"论文自动复现 Agent"的征途中,我本以为最难的是代码生成或算法对齐。然而,现实在第一步就给了我一记响亮的耳光。

在上一篇博客中,我利用 PyMuPDF 搭建了基础解析器。结果出炉:54 分(D 级)。

看着那份惨不忍睹的报告:元数据丢失严重,文档结构混乱。最致命的是------公式提取率为 0。对于理工科论文复现来说,没有公式就像写程序没有变量名。

第一章:元数据的"精雕细琢"

我首先针对 30% 的低完整度元数据进行了"外科手术"。转向了基于布局逻辑的启发式规则:

  1. Header 区块锁定:识别第一页顶部的特定区域。
  2. 作者域特征提取:通过邮箱后缀(@)分离作者列表。
  3. 动态截断逻辑:定位 "Abstract" 标签并设定截取终点。

战报:元数据得分由 30 跃升至 100(满分),总分回退至 68 分。

第二章:寻找解析的"圣杯"------Marker 实验

公式解析的难点在于数学符号。我将目光锁定了开源利器:Marker。

  1. 本地环境的"陷阱":numpy 2.x 与 pandas 的版本冲突,以及 3GB 模型的下载噩梦。
  2. 云端的"救赎":转向 Datalab API。解决 aiohttp 压缩编码 Bug 后,API 顺利打通。

第三章:92 分的终章

当我把 Datalab 返回的 Markdown 文本喂进评测系统时,分数瞬间"炸"开了:

  • 总分:92 分
  • 等级:A+
  • 公式质量:显著提升

从 54 到 92,是解析思路从"纯文本提取"到"多模态布局理解"的跨越。

核心教训

  1. 别跟公式硬碰硬:使用基于视觉布局的工具。
  2. 效率高于执念:环境配置过久就果断使用云端 API。
  3. 永远要有"底线":保留 PyMuPDF 作为 fallback。
相关推荐
Codebee43 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys2 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子2 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造