基于LLaMA-Factory大语言模型微调实战-训练一个属于自己的大模型

第一章 LLaMA-Factory安装及SFT微调

LLaMA-Factory 安装

运行以下指令以安装 LLaMA-Factory 及其依赖:

powershell 复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果出现环境冲突,请尝试使用 pip install --no-deps -e . 解决

下载模型

在魔塔社区下载Qwen2.5-0.5B-Instruct模型

复制代码
git clone https://www.modelscope.cn/Qwen/Qwen2.5-0.5B-Instruct.git

SFT微调

微调命令

复制代码
llamafactory-cli train examples/train_lora/qwen2.5_lora_sft.yaml

说明:examples/train_lora/qwen2.5_lora_sft.yaml是LLaMA-Factory文件夹下面的相对文件路径;

qwen2.5_lora_sft.yaml文件内容

txt 复制代码
### model
# model_name_or_path:本地下载模型存放的绝对路径
### model
model_name_or_path: /mnt/workspace/models/Qwen2.5-0.5B-Instruct
trust_remote_code: true

### method 
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all

### dataset数据集
dataset: identity
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4

### output 微调后模型存放的位置
output_dir: saves/Qwen2.5-0.5B-Instruct/lora/sft-2026-01-14-01
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null

### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

重要训练参数说明

数据集参数说明:

dataset: identity,identity是数据集json文件的名称,需要配置在/LLaMA-Factory/data/dataset_info.json文件中

identify.json文件路径为/LLaMA-Factory/data/identify.json,如下截图

微调过程截图

训练损失变化图

观察与分析

从 step 10 到 step 30,smoothed 曲线​ 从 loss ≈ 2.6 持续下降至 ≈ 1.4,表明模型在学习过程中逐步优化,微调有效。

相关推荐
小白|4 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑4 小时前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技4 小时前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子4 小时前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC22374 小时前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.4 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派4 小时前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追4 小时前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_949593654 小时前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON4 小时前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全