基于LLaMA-Factory大语言模型微调实战-训练一个属于自己的大模型

第一章 LLaMA-Factory安装及SFT微调

LLaMA-Factory 安装

运行以下指令以安装 LLaMA-Factory 及其依赖:

powershell 复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果出现环境冲突,请尝试使用 pip install --no-deps -e . 解决

下载模型

在魔塔社区下载Qwen2.5-0.5B-Instruct模型

复制代码
git clone https://www.modelscope.cn/Qwen/Qwen2.5-0.5B-Instruct.git

SFT微调

微调命令

复制代码
llamafactory-cli train examples/train_lora/qwen2.5_lora_sft.yaml

说明:examples/train_lora/qwen2.5_lora_sft.yaml是LLaMA-Factory文件夹下面的相对文件路径;

qwen2.5_lora_sft.yaml文件内容

txt 复制代码
### model
# model_name_or_path:本地下载模型存放的绝对路径
### model
model_name_or_path: /mnt/workspace/models/Qwen2.5-0.5B-Instruct
trust_remote_code: true

### method 
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all

### dataset数据集
dataset: identity
template: qwen
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4

### output 微调后模型存放的位置
output_dir: saves/Qwen2.5-0.5B-Instruct/lora/sft-2026-01-14-01
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none  # choices: [none, wandb, tensorboard, swanlab, mlflow]

### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null

### eval
# eval_dataset: alpaca_en_demo
# val_size: 0.1
# per_device_eval_batch_size: 1
# eval_strategy: steps
# eval_steps: 500

重要训练参数说明

数据集参数说明:

dataset: identity,identity是数据集json文件的名称,需要配置在/LLaMA-Factory/data/dataset_info.json文件中

identify.json文件路径为/LLaMA-Factory/data/identify.json,如下截图

微调过程截图

训练损失变化图

观察与分析

从 step 10 到 step 30,smoothed 曲线​ 从 loss ≈ 2.6 持续下降至 ≈ 1.4,表明模型在学习过程中逐步优化,微调有效。

相关推荐
智慧医院运行管理解决方案专家2 小时前
平安医院 智守心安 | AI智能巡逻机器人 全时域守护日志
人工智能·机器人
Deepoch2 小时前
Deepoc具身模型开发板:让采摘机器人成为果园的“智能农艺师“
人工智能·机器人·农业·采摘机器人·具身模型·deepoc·采摘
qunaa01012 小时前
起重机类型识别与检测:使用YOLO11-C3k2-AP模型提升目标检测精度_1
人工智能·目标检测·计算机视觉
极客Kimi2 小时前
从Java架构到AI架构:机器学习、深度学习与LLM的技术融合之路
java·人工智能·架构
HyperAI超神经2 小时前
揭秘 AI 推理:OpenAI 稀疏模型让神经网络首次透明化;Calories Burnt Prediction:为健身模型注入精准能量数据
人工智能·深度学习·神经网络·机器学习·开源·ai编程
龙亘川2 小时前
深度解析《人工智能安全治理研究报告(2025)》:产业实践框架与技术落地指南
人工智能·数据集团
java_logo2 小时前
PyTorch Docker 容器化部署与生产运行实践
人工智能·pytorch·docker·pytorch部署·pytorch部署文档·pytorch部署教程·pytorch上部署方案
视***间2 小时前
视程空间AIR算力开发平台:以边缘智能之核,驱动机器人产业迈入全域自动化时代
大数据·人工智能·机器人·区块链·边缘计算·视程空间
予枫的编程笔记2 小时前
【JDK垃圾回收器】JDK垃圾回收器全对比:G1/ZGC/Shenandoah选型实战
人工智能·zgc·g1·垃圾回收器·shenandoah