本次使用CoNLL-2003 dataset数据集对bert-base-cased模型进行分类下游任务微调。
本次共分为3块进行:
- 数据预处理;
- API模型微调;
- Accelerate模型自定义微调;
数据预处理
查看数据
python
from datasets import load_dataset
raw_datasets = load_dataset("conll2003") # train/valid/test
ner_feature = raw_datasets["train"].features["ner_tags"]
>>>ner_feature
>>>Sequence(feature=ClassLabel(num_classes=9, names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'], names_file=None, id=None), length=-1, id=None)
>>>ner_feature.feature.names
>>>['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC']
可以使用Datasets.features对象,并通过其属性去查看分类标签、总分类数等。
python
# 编辑了一个函数,可以打印出样本和其对应标签的对齐展示方式
def align_token_label(label_name, idx):
labels = raw_datasets['train'].features[label_name]
labels_name = labels.feature.names
line1 = ''
line2 = ''
for token, label in zip(raw_datasets['train'][idx]['tokens'], raw_datasets['train'][idx][label_name]):
# print(token, label)
max_length = max(len(token), len(labels_name[label]))
line1 += token + ' '* (max_length - len(token) + 1)
line2 += labels_name[label] + ' '* (max_length - len(labels_name[label]) + 1)
print(line1)
print(line2)
align_token_label('chunk_tags', 0)
align_token_label('pos_tags', 0)
align_token_label('ner_tags', 0)
#EU rejects German call to boycott British lamb .
#B-NP B-VP B-NP I-NP B-VP I-VP B-NP I-NP O
#EU rejects German call to boycott British lamb .
#NNP VBZ JJ NN TO VB JJ NN .
#EU rejects German call to boycott British lamb .
#B-ORG O B-MISC O O O B-MISC O O
这一步是对预分词的结果进行标签化,而不是直接对可输入模型的token进行标签化。
tokenizer
因此,下一步是需要把预分词结果进行tokenizer,并且把标签进行扩展。
python
from transformers import AutoTokenizer
model_checkpoint = "bert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True)
>>>inputs.tokens()
>>>['[CLS]', 'EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'la', '##mb', '.', '[SEP]']
其中is_split_into_words=True是指,让tokenizer认清输入样本的边界,不需要把样本中的单词合并 后再次使用自带的tokenizer进行处理,而是对每个单词进行tokenizer。
下一步需要把新增的la、##mb与不足的标签进行对应,需要用到word_ids得到tokens_to_word。
python
>>>inputs.word_ids()
>>>[None, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, None]
添加标签
核心的思路是:需要把word_ids中重复的 (来源于一个单词)打上标签 (如果是B-开头换成I-)
python
from transformers import AutoTokenizer
model_checkpoint = "bert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True)
labels = raw_datasets['train'][0]['ner_tags']
word_ids = inputs.word_ids()
new_labels = []
current_word_idx = None
for word_idx in word_ids:
if word_idx == None:
new_labels.append(-100)
elif word_idx != current_word_idx:
current_word_idx = word_idx
new_labels.append(labels[word_idx])
else:
new_labels.append(-100)
# Same word as previous token
#label = labels[word_id]
# If the label is B-XXX we change it to I-XXX
#if label % 2 == 1:
# label += 1
#new_labels.append(label)
print(inputs.tokens())
print(new_labels)
为了使得适配于batched=True的批次处理,需要适用于 List[List]的嵌套结构。
python
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples["tokens"], truncation=True, is_split_into_words=True
)
all_labels = examples["ner_tags"]
new_labels = []
for i, labels in enumerate(all_labels):
word_ids = tokenized_inputs.word_ids(i)
new_labels.append(align_labels_with_tokens(labels, word_ids))
tokenized_inputs["labels"] = new_labels
return tokenized_inputs
tokenized_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
)
#技巧 输入的examples是{'ids':[1,2,3...], 'tokens':[[x,xx,xx], [xxx, xxx],...],...}这个形式,因此新添加一个labels(模型认可的输入字段),该字段也是[[], [], [],...]嵌套 的形式。这就是最外层需要一个列表的原因。
API模型微调
数据padding
由于这里需要把
padding的内容与inputs中的相同,用-100以不参与损失函数计算。
python
from transformers import DataCollatorForTokenClassification
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
>>>batch["labels"]
>>>tensor([[-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0, -100],
[-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100]])
这里可以看到padding的内容由-100填充。
指标计算函数
python
!pip install seqeval
import evaluate
metric = evaluate.load("seqeval")
seqeval是把标签视作字符串 ,如B-ORG进行准确率计算,而不是视作整型数据(one-hot)对比。
例如,
python
labels = raw_datasets["train"][0]["ner_tags"]
labels = [label_names[i] for i in labels]
>>>labels
>>>['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O', 'O']
predictions = labels.copy()
predictions[2] = "O"
metric.compute(predictions=[predictions], references=[labels])
这里相当于直接使用['B-ORG', 'O', 'B-MISC', 'O', 'O', 'O', 'B-MISC', 'O', 'O']与['B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-MISC', 'O', 'O']进行指标的计算。
最终可以得到每一个实体以及总体 的precision/F1/recall分数。
python
import numpy as np
def compute_metrics(eval_preds):
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)
# Remove ignored index (special tokens) and convert to labels
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
true_predictions = [
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
return {
"precision": all_metrics["overall_precision"],
"recall": all_metrics["overall_recall"],
"f1": all_metrics["overall_f1"],
"accuracy": all_metrics["overall_accuracy"],
}
这里注意,传入的eval_preds是模型输出的概率值张量以及标签值元组。进行指标计算时,把真实标签为特殊字符 的(预处理时token转化为了-100)不纳入指标计算中。
模型参数定义
python
id2label = {i: label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}
from transformers import AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained(
model_checkpoint,
id2label=id2label,
label2id=label2id,
)
#开发 分类模型中需传入num_lables参数,若不确定可传入id2label/label2id参数动态计算。
python
from transformers import TrainingArguments
args = TrainingArguments(
"bert-finetuned-ner",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
num_train_epochs=3,
weight_decay=0.01,
push_to_hub=True,
)
from transformers import Trainer
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
compute_metrics=compute_metrics,
processing_class=tokenizer,
)
trainer.train()
自定义训练流程
python
from torch.utils.data import DataLoader
train_dataloader = DataLoader(
tokenized_datasets["train"],
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8
)
model = AutoModelForTokenClassification.from_pretrained(
model_checkpoint,
id2label=id2label,
label2id=label2id,
)
使用DataLoader方法加载数据集,其中需要使用collate_fn字段去传递动态分词填充器。
python
from torch.optim import AdamW
optimizer = AdamW(model.parameters(), lr=2e-5)
使用AdamW优化器取代Adam优化器,改进权重衰减。
python
from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
#提示 一次性把模型、优化器、训练集、测试集放入accelerate.prepare中。
python
from transformers import get_scheduler
num_train_epochs = 3
num_update_steps_per_epoch = len(train_dataloader)
num_training_steps = num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps,
)
使用经典的线性学习率递增策略,从学习率逐渐减小到 0:
!NOTE
由于
collate_fn会使得数据集的长度有所变化 ,因此要以此为准来规划lr_scheduler。
python
from huggingface_hub import Repository, get_full_repo_name
# 存储库名称定义,上传到huggingface
model_name = "bert-finetuned-ner-accelerate"
repo_name = get_full_repo_name(model_name)
# 同步存储库到本地位置
output_dir = "bert-finetuned-ner-accelerate"
repo = Repository(output_dir, clone_from=repo_name)
我们可以将该仓库克隆到本地文件夹,后续可以通过调用 repo.push_to_hub() 方法上传保存在 output_dir (文件夹)中的任何内容。这将有助于我们在每个训练周期结束时上传中间模型。
python
def postprocess(predictions, labels):
predictions = predictions.detach().cpu().clone().numpy()
labels = labels.detach().cpu().clone().numpy()
# Remove ignored index (special tokens) and convert to labels
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
true_predictions = [
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
return true_labels, true_predictions
接收预测和标签的字符串,同样排除不参与指标计算的[CLS]/[SEP]等特殊字符。
python
from tqdm.auto import tqdm
import torch
progress_bar = tqdm(range(num_training_steps))
for epoch in range(num_train_epochs):
# Training
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
# Evaluation
model.eval()
for batch in eval_dataloader:
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
labels = batch["labels"]
# Necessary to pad predictions and labels for being gathered
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
predictions_gathered = accelerator.gather(predictions)
labels_gathered = accelerator.gather(labels)
true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered)
metric.add_batch(predictions=true_predictions, references=true_labels)
results = metric.compute()
print(
f"epoch {epoch}:",
{
key: results[f"overall_{key}"]
for key in ["precision", "recall", "f1", "accuracy"]
},
)
# Save and upload
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False
)
上述为训练和测试的全流程,其中几个不同的点需要注意:
accelerator.backward(loss),进行梯度回传;accelerator.pad_across_processes和accelerator.gather,由于accelerator是一个分布式训练的框架,因此涉及到不同进程之间 的batch的长度对齐 ,需要使用pad_across_processes。等不同的进程之间的batch长度对齐后,使用gather把所有进程的张量进行聚合;accelerator.wait_for_everyone(),告诉所有进程等待,直到所有进程都达到该阶段后再继续,以确保在保存之前,每个进程都使用相同的模型;accelerator.unwrapped_model(),由于使用accelerator.prepare()把模型改为了分布式,缺少了save_pretrained方法,因此需要使用unwrapped_model使得恢复保存方法。