【关于多模态情感识别数据集的报告】

在多模态情感识别(Multimodal Sentiment Analysis, MSA)领域,数据集的选择直接决定了研究的场景和难度。目前主流的数据集主要涵盖**文本(Text)、语音(Audio)和视觉(Vision/Video)**三个模态。

目前学术界最常用的几个核心数据集,并分析了它们之间的区别:

以下是整理后的Markdown格式表格:

数据集对比表

数据集名称 主要模态 数据来源 规模(片段数) 情感标注类型
CMU-MOSI T + A + V YouTube 视频回馈 2,199 情感极性 [-3, +3]
CMU-MOSEI T + A + V YouTube (多领域) 23,453 极性 [-3, +3] + 6类情绪
IEMOCAP T + A + V 实验室录制对话 10,039 9类情绪类别
MELD T + A + V 美剧《老友记》 13,000+ 7类情绪 + 3类极性
CH-SIMS T + A + V 中文影视剧/短视频 2,281 中文单模态+多模态标注

注:

  • 模态说明:T=文本,A=音频,V=视频
  • 规模列中"13,000+"表示该数据集包含超过1.3万条片段
    1. 它们的主要区别是什么?
      我们可以从以下三个维度来拆解它们的差异:

A. 场景真实度 (In-the-wild vs. Lab)

答:野外与实验室

CMU-MOSI/MOSEI 属于"野外"数据集。数据来自 YouTube 上的博主分享,背景噪音多、光线变化大、表达非常自然,是目前测试算法鲁棒性的首选。

IEMOCAP 是典型的"实验室"数据集。由专业演员按照剧本或命题进行表演并录制。虽然不够"野外",但它的信号质量极高,非常适合研究细微的面部表情和语音特征。

B. 交互模式 (Monologue vs. Conversation)

单人演说 (Monologue): MOSI 和 MOSEI 主要是演讲者对着摄像头表达观点。研究重点在于如何融合一个人的三种模态信息。

多人对话 (Conversation): MELD 和 IEMOCAP 是对话式数据集。这要求模型不仅要看当前的模态,还要考虑上下文(Context)。比如在《老友记》(MELD) 中,某人的一句话是幽默还是讽刺,往往取决于前一个人说了什么。

C. 标注的深度与粒度

情感极性 (Sentiment): MOSI/MOSEI 强调的是"好感度",标注是连续的数值(如 -3 到 +3),适合做回归任务。

情绪类别 (Emotion): MELD 和 IEMOCAP 强调的是具体心情(如生气、喜悦、悲伤、惊讶),适合做分类任务。

单模态独立标注: CH-SIMS(中文数据集)的一个特点是它为每个模态都单独打了分。这解决了"虽然整体是开心的,但其实文字很悲伤"这种模态冲突的研究问题。

相关推荐
QBoson2 小时前
量子赋能多智能体路径规划:破解无人机、自动驾驶的 “避撞难题”
人工智能·自动驾驶·无人机·量子计算
ar012310 小时前
AR远程协助作用
人工智能·ar
北京青翼科技10 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航11 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授12 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪12 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴061612 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor12 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES12 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr678913 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养