知识图谱(三)之知识查询语言

一:查询语言介绍

1.为什么不使用sql

关系型数据库查询语言------SQL

方式:数据以表的形式存在, 有比较强的schema定义, 表和表之间的数据关联以join的方式实现.

缺点:MySQL主要是存储和查询二维表数据,对三元组数据没有单独意义;

多跳关联查询需要多表连接,效率低

2.图数据查询语言的区别

二:命名实体识别(NER)

2.1基础知识

2.1.1什么是NER
  • 实体:文本之中承载信息的语义单元。

  • 常见的实体包括七种类别:人名、地名、机构名、时间、日期、货币、百分比。

  • 实体抽取:又称为命名实体识别,指的是从文本之中抽取出命名性实体,并把这些实体划分到指定的类别。

2.1.2识别后格式

原文本:

命名实体后的文本:

总体是字典格式,里面的命名实体是双层列表嵌套格式,下标是左闭右开.

补充:文本分类后的格式

2.2命名实体识别的方法

2.2.1基于规则的方法实现NER

使用自定义规则匹配NER:

eg:使用正则表达式匹配NER

优点:方便,快捷

缺点:泛用性差,后期格式越来越复杂,难以维护

2.2.2基于机器学习方法实现NER

机器学习把NER转换为序列标注任务

1.实现步骤:
  • 人工选择特征

  • 训练模型

  • 预测实体

2.模型选择

机器学习的方法是把实体抽取任务转换为序列任务,每个token做标注(理论上所有分类模型都可以作为标注模型,但是效果最好的是条件随机场(CRF)):

B:开头

E:结尾

3.缺点:

缺点:依赖特征的选择,特征选择的不好,很难有好的效果.

2.2.3基于深度学习的方法实现NER

深度学习也是把NER转换为序列标注任务

1.概念:

基于深度学习的方法主要使用神经网络模型,结合条件随机场模型。常用的神经网络模型包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,其中BiLSTM-CRF是目前最为常用的命名实体识别模型

2.原理:
3.优缺点

优点:特征靠模型自己提取

缺点:需要大量的标注文本

2.3NER评测标准

精确率:模型识别出来的实体中,被所有预测为正的样本中实际为正样本的概率

召回率:模型识别出来的实体中,实际为正的样本中被预测为正样本的概率

F1值: 准确率和召回率的调和平均值,可以对系统的性能进行综合性的评价

相关推荐
KG_LLM图谱增强大模型3 小时前
知识图谱的演进:从静态到动态、时序与事件的全景综述
人工智能·大模型·知识图谱
高洁0119 小时前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
北京地铁1号线1 天前
1.3 元数据(Metadata)管理
知识图谱·元数据·graphrag
田井中律.1 天前
知识图谱(一)
人工智能·知识图谱
Allen_LVyingbo1 天前
具备安全护栏与版本化证据溯源的python可审计急诊分诊平台复现
开发语言·python·安全·搜索引擎·知识图谱·健康医疗
北京地铁1号线2 天前
1.2 文本分块策略(Chunking)
知识图谱·文档分块
KG_LLM图谱增强大模型2 天前
知识图谱+大模型“驱动的生物制药企业下一代主数据管理:Neo4j知识图谱与GraphRAG及GenAI的深度整合
人工智能·大模型·知识图谱
淬炼之火2 天前
笔记:场景图生成综述(Scene Understanding)
图像处理·笔记·计算机视觉·知识图谱·场景感知
北京地铁1号线2 天前
1.1 文档解析:PDF/Word/HTML的结构化提取
开发语言·知识图谱·文档解析