在信息爆炸的时代,企业每天处理数以千计的文档------从技术手册、合同协议到研究报告。传统的关键词搜索已无法满足深度分析需求。本文将详细讲解如何基于 MCP(Model Context Protocol) 构建一个能理解、分析并智能推荐关联信息的文档分析系统。
一、系统架构设计
1.1 整体架构
┌─────────────────────────────────────────────────┐
│ AI 应用层 (Claude/ChatGPT) │
├─────────────────────────────────────────────────┤
│ MCP 协议层 (安全工具调用) │
├─────────────────────────────────────────────────┤
│ ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐ │
│ │文档提取│ │向量存储│ │知识图谱│ │关联推荐│ │
│ │ MCP │ │ MCP │ │ MCP │ │ MCP │ │
│ └───────┘ └───────┘ └───────┘ └───────┘ │
├─────────────────────────────────────────────────┤
│ 文档存储 │ 向量数据库 │ 图数据库 │
└─────────────────────────────────────────────────┘
1.2 技术栈选择
- MCP 框架 :
@modelcontextprotocol/sdk(Node.js/Python) - 文档处理: Unstructured.io, PDF.js, mammoth (Word)
- 向量计算: Sentence Transformers, OpenAI Embeddings
- 向量存储: ChromaDB, Pinecone, Qdrant
- 图数据库: Neo4j, NebulaGraph
- 缓存层: Redis
- 任务队列: Bull (Node.js) 或 Celery (Python)
二、MCP 服务器详细实现
2.1 文档提取服务器 (document-extractor-server)
typescript
// document-extractor-server.ts
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js';
import { extractText, extractMetadata, chunkDocument } from './processors/index.js';
import { createHash } from 'crypto';
export class DocumentExtractorServer extends Server {
private processedCache = new Map<string, any>();
constructor() {
super({
name: 'document-extractor',
version: '1.0.0'
});
this.setupTools();
}
private setupTools() {
// 工具1: 提取文档内容
this.setRequestHandler('tools/list', async () => ({
tools: [
{
name: 'extract_document',
description: '从各种格式文档中提取结构化内容',
inputSchema: {
type: 'object',
properties: {
filepath: { type: 'string' },
chunk_size: { type: 'number', default: 1000 },
overlap: { type: 'number', default: 200 }
},
required: ['filepath']
}
},
{
name: 'extract_from_url',
description: '从URL提取网页内容',
inputSchema: {
type: 'object',
properties: {
url: { type: 'string' },
selector: { type: 'string' }
},
required: ['url']
}
}
]
}));
// 工具执行处理器
this.setRequestHandler('tools/call', async (request) => {
switch (request.params.name) {
case 'extract_document':
return await this.handleExtractDocument(request.params.arguments);
case 'extract_from_url':
return await this.handleExtractFromUrl(request.params.arguments);
default:
throw new Error(`Unknown tool: ${request.params.name}`);
}
});
}
private async handleExtractDocument(args: any) {
const { filepath, chunk_size, overlap } = args;
// 检查缓存
const hash = createHash('md5').update(filepath).digest('hex');
if (this.processedCache.has(hash)) {
return this.processedCache.get(hash);
}
// 提取文档
const content = await extractText(filepath);
const metadata = await extractMetadata(filepath);
const chunks = await chunkDocument(content, chunk_size, overlap);
const result = {
metadata,
chunks,
total_chunks: chunks.length,
file_size: content.length
};
// 缓存结果 (5分钟)
this.processedCache.set(hash, result);
setTimeout(() => this.processedCache.delete(hash), 300000);
return {
content: [{
type: 'text',
text: JSON.stringify(result, null, 2)
}]
};
}
}
// 启动服务器
const server = new DocumentExtractorServer();
const transport = new StdioServerTransport();
await server.connect(transport);
2.2 向量嵌入服务器 (embedding-server)
python
# embedding_server.py
from mcp.server import Server, stdio_server
from sentence_transformers import SentenceTransformer
import numpy as np
import asyncio
from typing import List, Dict
import pickle
import lzma
class EmbeddingServer(Server):
def __init__(self):
super().__init__("embedding-server", "1.0.0")
# 加载多语言模型
self.models = {
"all-MiniLM-L6-v2": SentenceTransformer('all-MiniLM-L6-v2'),
"paraphrase-multilingual-MiniLM-L12-v2":
SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
}
self.cache = {}
async def list_tools(self):
return {
"tools": [
{
"name": "generate_embeddings",
"description": "为文本生成向量嵌入",
"inputSchema": {
"type": "object",
"properties": {
"texts": {
"type": "array",
"items": {"type": "string"},
"description": "要嵌入的文本列表"
},
"model_name": {
"type": "string",
"enum": list(self.models.keys()),
"default": "all-MiniLM-L6-v2"
},
"normalize": {"type": "boolean", "default": True}
},
"required": ["texts"]
}
},
{
"name": "semantic_search",
"description": "语义搜索相似内容",
"inputSchema": {
"type": "object",
"properties": {
"query": {"type": "string"},
"embeddings": {"type": "array", "items": {"type": "array"}},
"k": {"type": "number", "default": 5}
},
"required": ["query", "embeddings"]
}
}
]
}
async def handle_generate_embeddings(self, texts: List[str],
model_name: str = "all-MiniLM-L6-v2",
normalize: bool = True) -> Dict:
cache_key = hash(tuple(texts) + (model_name, normalize))
if cache_key in self.cache:
return self.cache[cache_key]
model = self.models[model_name]
embeddings = model.encode(texts, normalize_embeddings=normalize)
# 压缩存储
compressed = lzma.compress(pickle.dumps(embeddings.tolist()))
result = {
"embeddings": embeddings.tolist(),
"dimension": embeddings.shape[1],
"compressed_size": len(compressed),
"model": model_name
}
self.cache[cache_key] = result
return result
async def handle_semantic_search(self, query: str, embeddings: List, k: int = 5):
query_embedding = self.models["all-MiniLM-L6-v2"].encode([query])[0]
embeddings_array = np.array(embeddings)
# 计算余弦相似度
similarities = np.dot(embeddings_array, query_embedding) / (
np.linalg.norm(embeddings_array, axis=1) * np.linalg.norm(query_embedding)
)
top_k_indices = np.argsort(similarities)[-k:][::-1]
return {
"indices": top_k_indices.tolist(),
"scores": similarities[top_k_indices].tolist()
}
async def main():
server = EmbeddingServer()
await server.run(stdio_server())
if __name__ == "__main__":
asyncio.run(main())
2.3 知识图谱构建服务器 (knowledge-graph-server)
javascript
// knowledge-graph-server.js
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
import neo4j from 'neo4j-driver';
import { OpenAI } from 'openai';
export class KnowledgeGraphServer extends Server {
constructor() {
super({ name: 'knowledge-graph', version: '1.0.0' });
// 连接 Neo4j
this.driver = neo4j.driver(
process.env.NEO4J_URI,
neo4j.auth.basic(process.env.NEO4J_USER, process.env.NEO4J_PASSWORD)
);
this.openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY
});
this.setupTools();
}
setupTools() {
this.setRequestHandler('tools/list', async () => ({
tools: [
{
name: 'extract_entities',
description: '从文本中提取实体和关系',
inputSchema: {
type: 'object',
properties: {
text: { type: 'string' },
document_id: { type: 'string' }
},
required: ['text']
}
},
{
name: 'query_related',
description: '查询相关实体和路径',
inputSchema: {
type: 'object',
properties: {
entity: { type: 'string' },
relation_type: { type: 'string' },
depth: { type: 'number', default: 2 }
},
required: ['entity']
}
},
{
name: 'find_similar_documents',
description: '基于知识图谱查找相似文档',
inputSchema: {
type: 'object',
properties: {
document_id: { type: 'string' },
limit: { type: 'number', default: 5 }
},
required: ['document_id']
}
}
]
}));
}
async handleExtractEntities(args) {
const { text, document_id } = args;
// 使用 OpenAI 提取实体和关系
const completion = await this.openai.chat.completions.create({
model: "gpt-4",
messages: [{
role: "system",
content: `提取文本中的实体和关系,返回JSON格式:
{
"entities": [{"name": "", "type": "PERSON|ORG|CONCEPT|LOCATION"}],
"relations": [{"source": "", "target": "", "type": "WORKS_FOR|MENTIONS|RELATED_TO"}]
}`
}, {
role: "user",
content: text.substring(0, 4000)
}],
response_format: { type: "json_object" }
});
const result = JSON.parse(completion.choices[0].message.content);
// 存储到 Neo4j
const session = this.driver.session();
try {
// 创建文档节点
await session.run(
`MERGE (d:Document {id: $docId})
SET d.processed_at = datetime()`,
{ docId: document_id }
);
// 创建实体节点和关系
for (const entity of result.entities) {
await session.run(
`MERGE (e:Entity {name: $name, type: $type})
MERGE (d:Document {id: $docId})
MERGE (e)-[:APPEARS_IN]->(d)`,
{ name: entity.name, type: entity.type, docId: document_id }
);
}
// 创建实体间关系
for (const rel of result.relations) {
await session.run(
`MATCH (a:Entity {name: $source})
MATCH (b:Entity {name: $target})
MERGE (a)-[r:${rel.type}]->(b)
SET r.source_document = $docId,
r.extracted_at = datetime()`,
{ source: rel.source, target: rel.target, docId: document_id }
);
}
} finally {
await session.close();
}
return {
content: [{
type: 'text',
text: `提取了 ${result.entities.length} 个实体和 ${result.relations.length} 个关系`
}]
};
}
}
2.4 关联推荐服务器 (recommendation-server)
python
# recommendation_server.py
from mcp.server import Server
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from collections import defaultdict
import networkx as nx
class RecommendationServer(Server):
def __init__(self):
super().__init__("recommendation-server", "1.0.0")
self.user_profiles = defaultdict(dict)
self.document_graph = nx.Graph()
async def list_tools(self):
return {
"tools": [
{
"name": "recommend_related",
"description": "推荐相关内容",
"inputSchema": {
"type": "object",
"properties": {
"content": {"type": "string"},
"context": {
"type": "object",
"properties": {
"recent_docs": {"type": "array", "items": {"type": "string"}},
"user_interests": {"type": "array", "items": {"type": "string"}}
}
},
"max_recommendations": {"type": "number", "default": 10}
},
"required": ["content"]
}
},
{
"name": "build_user_profile",
"description": "基于交互历史构建用户画像",
"inputSchema": {
"type": "object",
"properties": {
"user_id": {"type": "string"},
"interactions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"document_id": {"type": "string"},
"action": {"type": "string", "enum": ["view", "save", "share"]},
"duration": {"type": "number"}
}
}
}
},
"required": ["user_id", "interactions"]
}
}
]
}
async def handle_recommend_related(self, content, context=None, max_recommendations=10):
recommendations = []
# 1. 基于内容的协同过滤
content_embedding = await self.get_embedding(content)
doc_similarities = self.calculate_similarities(content_embedding)
# 2. 基于知识图谱的推荐
kg_recommendations = await self.get_kg_recommendations(content)
# 3. 基于用户画像的个性化推荐
if context and context.get('user_interests'):
personalized = await self.get_personalized_recommendations(
content, context['user_interests']
)
recommendations.extend(personalized)
# 混合排序算法
final_recs = self.rank_recommendations(
doc_similarities,
kg_recommendations,
personalized if 'personalized' in locals() else []
)
return {
"recommendations": final_recs[:max_recommendations],
"sources": ["content_based", "knowledge_graph", "collaborative"],
"reasoning": "基于内容相似度、知识图谱关联和用户兴趣的多维度推荐"
}
def rank_recommendations(self, *recommendation_lists):
"""混合排序算法"""
ranked = defaultdict(float)
for i, rec_list in enumerate(recommendation_lists):
weight = 1.0 / (i + 1) # 递减权重
for j, (doc_id, score) in enumerate(rec_list):
ranked[doc_id] += score * weight * (0.9 ** j) # 位置衰减
return sorted(ranked.items(), key=lambda x: x[1], reverse=True)
三、系统集成配置
3.1 Claude Desktop 配置
json
// ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"document-extractor": {
"command": "node",
"args": ["./servers/document-extractor-server.js"],
"env": {
"NODE_ENV": "production",
"MAX_FILE_SIZE": "104857600"
}
},
"embedding-server": {
"command": "python",
"args": ["./servers/embedding_server.py"],
"env": {
"CACHE_DIR": "./cache/embeddings",
"MODEL_CACHE_SIZE": "10"
}
},
"knowledge-graph": {
"command": "node",
"args": ["./servers/knowledge-graph-server.js"],
"env": {
"NEO4J_URI": "bolt://localhost:7687",
"OPENAI_API_KEY": "${OPENAI_API_KEY}"
}
},
"recommendation-engine": {
"command": "python",
"args": ["./servers/recommendation_server.py"],
"env": {
"REDIS_URL": "redis://localhost:6379"
}
},
"vector-database": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-chromadb",
"--persist-dir", "./data/chroma"]
}
}
}
3.2 Docker 部署配置
dockerfile
# Dockerfile
FROM node:18-alpine AS base
# 文档提取服务
FROM base AS document-extractor
WORKDIR /app
COPY servers/document-extractor/package*.json ./
RUN npm ci --only=production
COPY servers/document-extractor/ .
CMD ["node", "index.js"]
# 向量服务
FROM python:3.11-slim AS embedding-server
WORKDIR /app
COPY servers/embedding/requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY servers/embedding/ .
CMD ["python", "server.py"]
# docker-compose.yml
version: '3.8'
services:
document-extractor:
build:
context: .
target: document-extractor
volumes:
- ./documents:/documents:ro
- ./cache:/cache
environment:
- CACHE_DIR=/cache
embedding-server:
build:
context: .
target: embedding-server
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
environment:
- TRANSFORMERS_CACHE=/cache/models
neo4j:
image: neo4j:5-enterprise
environment:
- NEO4J_AUTH=neo4j/password
- NEO4J_ACCEPT_LICENSE_AGREEMENT=yes
volumes:
- neo4j_data:/data
- neo4j_logs:/logs
redis:
image: redis:7-alpine
chromadb:
image: chromadb/chroma:latest
volumes:
- chroma_data:/chroma/chroma
四、使用场景示例
4.1 智能文档问答
markdown
用户:请分析这份技术白皮书,并告诉我:
1. 主要技术要点
2. 相关的实施案例
3. 推荐的进一步阅读资料
AI(通过 MCP):
1. **技术要点分析**:
- 使用 document-extractor 提取文档内容
- 通过 embedding-server 识别关键技术概念
- 使用 knowledge-graph 建立概念关联
2. **实施案例搜索**:
- 在知识图谱中查询相关案例
- 语义搜索相似文档
- 按相关性排序返回
3. **智能推荐**:
- 基于当前文档向量推荐相似内容
- 根据知识图谱推荐进阶阅读
- 结合用户历史推荐个性化内容
4.2 工作流自动化
bash
#!/bin/bash
# 自动化文档处理流水线
# 1. 批量处理文档
curl -X POST http://localhost:8080/mcp/tools/call \
-H "Content-Type: application/json" \
-d '{
"server": "document-extractor",
"tool": "batch_process",
"arguments": {
"directory": "/documents/quarterly",
"format": ["pdf", "docx"]
}
}'
# 2. 构建知识图谱
curl -X POST http://localhost:8080/mcp/tools/call \
-H "Content-Type: application/json" \
-d '{
"server": "knowledge-graph",
"tool": "build_graph",
"arguments": {
"doc_ids": ["doc1", "doc2", "doc3"],
"relationship_types": ["cites", "mentions", "related_to"]
}
}'
# 3. 生成分析报告
curl -X POST http://localhost:8080/mcp/tools/call \
-H "Content-Type: application/json" \
-d '{
"server": "recommendation-engine",
"tool": "generate_insights",
"arguments": {
"time_range": "last_quarter",
"topics": ["AI", "Security", "Compliance"]
}
}'
五、性能优化策略
5.1 缓存策略
javascript
// 多层缓存实现
class OptimizedDocumentServer extends Server {
constructor() {
this.cache = {
memory: new Map(), // 内存缓存 (短期)
redis: new RedisCache(), // Redis缓存 (中期)
disk: new DiskCache('./cache'), // 磁盘缓存 (长期)
cdn: new CDNProxy() // CDN缓存 (静态资源)
};
// 缓存策略
this.cacheStrategies = {
embeddings: { ttl: 3600, level: 'memory' },
extracted_text: { ttl: 86400, level: 'disk' },
graph_results: { ttl: 300, level: 'redis' }
};
}
async getWithCache(key, fetchFn, strategy) {
// 多级缓存查询
for (const level of ['memory', 'redis', 'disk']) {
const cached = await this.cache[level].get(key);
if (cached) {
// 更新更快的缓存层级
await this.promoteToFasterCache(key, cached, level);
return cached;
}
}
// 缓存未命中,获取数据
const data = await fetchFn();
await this.cache[strategy.level].set(key, data, strategy.ttl);
return data;
}
}
5.2 异步批处理
python
# batch_processor.py
import asyncio
from concurrent.futures import ThreadPoolExecutor
from typing import List, Callable
class BatchProcessor:
def __init__(self, max_workers: int = 4, batch_size: int = 10):
self.executor = ThreadPoolExecutor(max_workers=max_workers)
self.semaphore = asyncio.Semaphore(max_workers)
self.batch_size = batch_size
async def process_batch(self, items: List, process_fn: Callable):
"""批量处理文档,优化IO和计算"""
batches = [items[i:i + self.batch_size]
for i in range(0, len(items), self.batch_size)]
results = []
for batch in batches:
async with self.semaphore:
# 并行处理每个批次
batch_results = await asyncio.gather(
*[self._process_single(item, process_fn) for item in batch],
return_exceptions=True
)
results.extend(batch_results)
return results
async def _process_single(self, item, process_fn):
loop = asyncio.get_event_loop()
# 将CPU密集型任务放到线程池
return await loop.run_in_executor(self.executor, process_fn, item)
六、安全与权限控制
6.1 细粒度权限管理
yaml
# security-policy.yaml
access_control:
# 基于角色的访问控制
roles:
reader:
allowed_tools: ["extract_document", "search_documents"]
allowed_paths: ["/public/*", "/shared/*"]
analyst:
inherits: ["reader"]
allowed_tools: ["analyze_trends", "build_graph"]
allowed_databases: ["analytics_db"]
admin:
allowed_tools: ["*"]
allowed_paths: ["/*"]
# 基于属性的访问控制
attributes:
- name: "document_sensitivity"
values: ["public", "internal", "confidential"]
conditions:
confidential:
require: ["security_clearance"]
ip_range: ["10.0.0.0/8"]
# 审计日志
audit:
enabled: true
log_tool_calls: true
log_data_access: true
retention_days: 90
6.2 数据脱敏处理
python
# data_masking.py
import re
from typing import Dict, Any
class DataMaskingMiddleware:
def __init__(self):
self.patterns = {
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'phone': r'\b(\+\d{1,3}[-.]?)?\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}\b',
'ssn': r'\b\d{3}[-]\d{2}[-]\d{4}\b',
'credit_card': r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b'
}
def mask_sensitive_data(self, text: str, user_role: str) -> str:
masked = text
# 根据用户角色决定脱敏级别
if user_role == 'internal':
# 只脱敏高度敏感信息
masked = self.mask_pattern(masked, 'ssn')
masked = self.mask_pattern(masked, 'credit_card')
elif user_role == 'public':
# 脱敏所有PII
for pattern_name in self.patterns:
masked = self.mask_pattern(masked, pattern_name)
return masked
def mask_pattern(self, text: str, pattern_name: str) -> str:
pattern = self.patterns[pattern_name]
def replacer(match):
if pattern_name == 'email':
parts = match.group(0).split('@')
return f"{parts[0][0]}***@{parts[1]}"
elif pattern_name == 'phone':
return f"{match.group(0)[:4]}***{match.group(0)[-4:]}"
else:
return '***MASKED***'
return re.sub(pattern, replacer, text)
七、监控与运维
7.1 监控仪表板
javascript
// monitoring-server.js
export class MonitoringServer extends Server {
constructor() {
super({ name: 'monitoring', version: '1.0.0' });
this.metrics = {
tool_calls: new Counter(),
response_times: new Histogram(),
errors: new Counter(),
cache_hits: new Counter()
};
this.setupMonitoringTools();
}
setupMonitoringTools() {
this.setRequestHandler('tools/list', async () => ({
tools: [
{
name: 'get_system_health',
description: '获取系统健康状态',
inputSchema: {
type: 'object',
properties: {
detailed: { type: 'boolean', default: false }
}
}
},
{
name: 'get_performance_metrics',
description: '获取性能指标',
inputSchema: {
type: 'object',
properties: {
time_range: {
type: 'string',
enum: ['1h', '24h', '7d', '30d']
}
}
}
}
]
}));
}
async handleGetSystemHealth(args) {
const health = {
status: 'healthy',
timestamp: new Date().toISOString(),
components: {
document_extractor: await this.checkServiceHealth('extractor'),
embedding_server: await this.checkServiceHealth('embedding'),
knowledge_graph: await this.checkServiceHealth('neo4j'),
vector_db: await this.checkServiceHealth('chromadb')
},
metrics: {
daily_requests: this.metrics.tool_calls.get('24h'),
avg_response_time: this.metrics.response_times.avg(),
error_rate: this.metrics.errors.rate('5m'),
cache_hit_rate: this.metrics.cache_hits.rate()
}
};
// 确定整体状态
const unhealthy = Object.values(health.components)
.filter(c => c.status !== 'healthy').length;
if (unhealthy > 0) {
health.status = unhealthy > 1 ? 'degraded' : 'warning';
}
return {
content: [{ type: 'text', text: JSON.stringify(health, null, 2) }]
};
}
}
7.2 Prometheus 指标导出
yaml
# prometheus.yml
scrape_configs:
- job_name: 'mcp-servers'
static_configs:
- targets:
- 'document-extractor:9090'
- 'embedding-server:9090'
- 'knowledge-graph:9090'
- 'recommendation-engine:9090'
metrics_path: '/metrics'
# Grafana 仪表板配置
dashboard:
panels:
- title: "请求量"
query: 'rate(mcp_tool_calls_total[5m])'
- title: "响应时间"
query: 'histogram_quantile(0.95, rate(mcp_response_time_seconds_bucket[5m]))'
- title: "错误率"
query: 'rate(mcp_errors_total[5m]) / rate(mcp_tool_calls_total[5m])'
八、实际应用案例
案例:法律文档分析系统
python
# legal_analysis_server.py
class LegalDocumentServer(Server):
async def analyze_contract(self, contract_text):
# 1. 条款提取
clauses = await self.extract_clauses(contract_text)
# 2. 风险识别
risks = await self.identify_risks(clauses)
# 3. 相似案例查找
similar_cases = await self.find_similar_cases(contract_text)
# 4. 建议生成
recommendations = await self.generate_recommendations(
clauses, risks, similar_cases
)
return {
"summary": self.generate_summary(clauses),
"risk_assessment": risks,
"similar_precedents": similar_cases[:5],
"recommendations": recommendations,
"compliance_check": await self.check_compliance(contract_text)
}
async def extract_clauses(self, text):
# 使用微调模型识别法律条款
return await self.call_tool('legal_clause_extractor', {
"text": text,
"jurisdiction": "US"
})
案例:学术文献推荐系统
javascript
// academic_recommender.js
class AcademicRecommender {
async findRelatedPapers(userPaper) {
// 1. 基于引用的推荐
const citationBased = await this.findByCitation(userPaper.citations);
// 2. 基于内容的推荐
const contentBased = await this.findBySemanticSimilarity(userPaper.abstract);
// 3. 基于作者的推荐
const authorBased = await this.findByAuthorCollaboration(userPaper.authors);
// 4. 基于研究趋势的推荐
const trendBased = await this.findByResearchTrends(userPaper.keywords);
return this.rankAndBlendRecommendations([
citationBased, contentBased, authorBased, trendBased
]);
}
}
九、未来扩展方向
9.1 多模态文档处理
python
# multimodal_server.py
class MultimodalDocumentServer:
async def process_multimodal(self, file_path):
# 提取文本内容
text = await self.extract_text(file_path)
# 提取图像中的文本和信息
images = await self.extract_images(file_path)
image_texts = await self.ocr_images(images)
image_descriptions = await self.describe_images(images)
# 处理表格数据
tables = await self.extract_tables(file_path)
table_analysis = await self.analyze_tables(tables)
# 多模态融合
combined = await this.fuse_modalities(
text, image_texts, image_descriptions, table_analysis
)
return combined
9.2 实时协作分析
javascript
// collaborative_analysis.js
class CollaborativeAnalysisServer {
async realtimeDocumentAnalysis(documentId, userId) {
// 实时文档更新监听
const changes = await this.watchDocumentChanges(documentId);
// 协同分析
const analysis = await this.collaborativeAnalyze(
documentId,
[userId, ...await this.getCollaborators(documentId)]
);
// 实时推荐更新
const recommendations = await this.updateRecommendations(
documentId,
changes,
analysis
);
return {
analysis,
recommendations,
collaborators: await this.getActiveCollaborators(documentId)
};
}
}
总结
通过 MCP 构建的智能文档分析系统实现了:
- 模块化设计 - 每个功能独立为 MCP 服务器,便于维护和扩展
- 安全可控 - 细粒度权限控制,数据脱敏处理
- 高性能 - 多层缓存、异步处理、批量操作
- 智能化 - 语义分析、知识图谱、个性化推荐
- 可观测性 - 完善的监控和日志体系
这种架构不仅适用于文档分析,还可以扩展到代码分析、研究助手、企业知识库等多个场景。MCP 的协议标准化使得不同 AI 应用可以无缝集成这些能力,真正实现了 "一次构建,多处使用" 的目标。
开源项目参考:
随着 MCP 生态的成熟,未来会有更多专业化的服务器出现,进一步降低构建智能文档分析系统的门槛。