
今天使用swift这个框架安装megatron,训模型,总是遇到一些莫名其妙的版本冲突bug,以及一些安装不上的bug。
下面直接给出修复安装的代码:
c
#!/bin/bash
# transformer_engine 完整安装脚本(解决所有依赖问题)
set -e
echo "=== Transformer Engine 完整安装脚本 ==="
source activate swift
# 步骤 1: 确保基础依赖已安装
echo ""
echo "=== 步骤 1: 检查并安装基础依赖 ==="
proxychains4 pip install --upgrade pip setuptools wheel ninja 2>&1 | tail -10
# 步骤 2: 安装 cuDNN(如果还没有)
echo ""
echo "=== 步骤 2: 确保 cuDNN 已安装 ==="
if [ ! -f "$CONDA_PREFIX/include/cudnn.h" ]; then
echo "安装 cuDNN via conda..."
conda install -c nvidia cudnn -y 2>&1 | tail -10
fi
# 步骤 3: 安装 NCCL(之前遇到过这个问题)
echo ""
echo "=== 步骤 3: 检查并安装 NCCL ==="
if [ ! -f "$CONDA_PREFIX/include/nccl.h" ] && [ ! -f "/usr/include/nccl.h" ]; then
echo "尝试安装 NCCL via conda..."
conda install -c nvidia nccl -y 2>&1 | tail -10 || {
echo "⚠️ conda 安装 NCCL 失败,尝试系统级安装..."
echo "lsz" | sudo -S apt-get install libnccl-dev -y 2>&1 | tail -10 || echo "⚠️ 系统级安装也失败"
}
fi
# 步骤 4: 设置所有必要的环境变量
echo ""
echo "=== 步骤 4: 设置编译环境变量 ==="
export CUDA_HOME=$CONDA_PREFIX
export CUDNN_INCLUDE_DIR=$CONDA_PREFIX/include
export CUDNN_LIBRARY_DIR=$CONDA_PREFIX/lib
export LD_LIBRARY_PATH=$CUDNN_LIBRARY_DIR:$LD_LIBRARY_PATH
# 设置 NCCL 路径(如果存在)
if [ -f "$CONDA_PREFIX/include/nccl.h" ]; then
export NCCL_INCLUDE_DIR=$CONDA_PREFIX/include
export NCCL_LIB_DIR=$CONDA_PREFIX/lib
elif [ -f "/usr/include/nccl.h" ]; then
export NCCL_INCLUDE_DIR=/usr/include
export NCCL_LIB_DIR=/usr/lib/x86_64-linux-gnu
export LD_LIBRARY_PATH=$NCCL_LIB_DIR:$LD_LIBRARY_PATH
fi
# 设置 CUDA 路径
if [ -d "/usr/local/cuda" ]; then
export CUDA_HOME=/usr/local/cuda
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
fi
echo "环境变量设置完成:"
echo " CUDA_HOME=$CUDA_HOME"
echo " CUDNN_INCLUDE_DIR=$CUDNN_INCLUDE_DIR"
echo " NCCL_INCLUDE_DIR=${NCCL_INCLUDE_DIR:-未设置}"
# 步骤 5: 尝试安装 transformer_engine(使用 --no-build-isolation 避免依赖问题)
echo ""
echo "=== 步骤 5: 安装 transformer_engine ==="
echo "方法 1: 使用 --no-build-isolation(推荐)..."
# 先尝试从标准 PyPI 安装
proxychains4 pip install transformer_engine[pytorch] --no-build-isolation 2>&1 | tee /tmp/te_install.log && {
echo "✓ transformer_engine 安装成功!"
exit 0
} || {
echo "⚠️ 标准 PyPI 安装失败,查看详细错误..."
tail -50 /tmp/te_install.log | grep -A 20 "error\|Error\|ERROR\|fatal" || tail -30 /tmp/te_install.log
}
# 如果失败,尝试从 NVIDIA PyPI 安装
echo ""
echo "方法 2: 从 NVIDIA PyPI 安装..."
proxychains4 pip install -i https://pypi.nvidia.com transformer_engine[pytorch] --no-build-isolation 2>&1 | tee /tmp/te_install_nvidia.log && {
echo "✓ 从 NVIDIA PyPI 安装成功!"
exit 0
} || {
echo "⚠️ NVIDIA PyPI 安装也失败,查看详细错误..."
tail -50 /tmp/te_install_nvidia.log | grep -A 20 "error\|Error\|ERROR\|fatal" || tail -30 /tmp/te_install_nvidia.log
}
# 如果还是失败,尝试安装特定版本
echo ""
echo "方法 3: 尝试安装较旧版本(可能更容易编译)..."
proxychains4 pip install "transformer_engine[pytorch]==2.4.0" --no-build-isolation 2>&1 | tail -30 && {
echo "✓ 安装旧版本成功!"
exit 0
} || echo "⚠️ 旧版本安装也失败"
# 最终诊断
echo ""
echo "=== 安装失败诊断 ==="
echo "检查关键文件:"
echo " cuDNN header: $([ -f "$CUDNN_INCLUDE_DIR/cudnn.h" ] && echo "✓ 存在" || echo "✗ 不存在")"
echo " NCCL header: $([ -f "${NCCL_INCLUDE_DIR:-/none}/nccl.h" ] && echo "✓ 存在" || echo "✗ 不存在")"
echo " CUDA: $([ -d "$CUDA_HOME" ] && echo "✓ 存在" || echo "✗ 不存在")"
echo ""
echo "如果仍然失败,可能需要:"
echo "1. 安装完整的 CUDA 工具包: conda install -c nvidia cuda-toolkit"
echo "2. 或者安装系统级开发包: sudo apt-get install libcudnn8-dev libnccl-dev"
echo "3. 检查编译错误日志: cat /tmp/te_install.log"
通过这个代码,成功安装。主要是在cursor的辅助下完成的。今天花费了几个小时搞这个transformer_engine。因为我记得megatron的环境一直不好配置安装。希望后面有人能从这篇博客中获取一点灵感。
后记
2026年1月15日于上海,周四。