[Vulkan 学习之路] 16 - 最终章:渲染循环与同步 (Rendering & Presentation)

欢迎来到第 16 篇!我们要画出那个三角形了!这是整个系列中最激动人心的一刻。

所有的准备工作------Instance, Device, SwapChain, Pipeline, Framebuffers, CommandBuffers------都是为了这一瞬间。我们终于要把这些零件组装成一台运转的引擎,让画面动起来。

但在此之前,我们需要解决 Vulkan 中最棘手的问题:同步 (Synchronization)

在 OpenGL 中,当你调用绘制函数时,CPU 通常会等待 GPU 完成,或者驱动程序会帮你管理同步。但在 Vulkan 中,CPU 和 GPU 是完全异步工作的

如果你不加控制,CPU 会疯狂地向 GPU 提交命令,不管 GPU 是否画完了上一帧,也不管屏幕是否正在读取当前的图像。这会导致画面撕裂、内存冲突,甚至程序崩溃。

我们需要交通信号灯。

信号量 (Semaphores) 与 栅栏 (Fences)

Vulkan 提供了两种同步原语:

  1. Semaphores (信号量): 用于 GPU 内部 的同步。

    • 比如:告诉渲染管线,"在获取到图像之前,不要开始画颜色"。

    • CPU 看不见 信号量的状态,它只负责告诉 GPU 哪一步依赖哪一个信号量。

  2. Fences (栅栏): 用于 CPU 和 GPU 之间 的同步。

    • 比如:CPU 问 GPU,"上一帧画完了吗?画完了我才能在这个 Command Buffer 里录制下一帧的数据。"

    • 这就像一道闸门,防止 CPU 跑得太快把内存写乱。

创建同步对象

我们需要三个对象来协调一帧的渲染:

  1. imageAvailableSemaphore: 图像已获取(GPU 告诉 GPU:我有画布了,可以画了)。

  2. renderFinishedSemaphore: 渲染已完成(GPU 告诉 GPU:我画完了,可以显示了)。

  3. inFlightFence: 这一帧 CPU 的工作完成了(GPU 告诉 CPU:你可以复用这个缓冲区了)。

添加成员变量

cpp 复制代码
VkSemaphore imageAvailableSemaphore;
VkSemaphore renderFinishedSemaphore;
VkFence inFlightFence;

编写创建函数

cpp 复制代码
void createSyncObjects() {
    VkSemaphoreCreateInfo semaphoreInfo{};
    semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

    VkFenceCreateInfo fenceInfo{};
    fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    // 关键点:初始化时将 Fence 设为 Signaled (已发出信号) 状态。
    // 否则,第一帧渲染时,CPU 会卡在 vkWaitForFences 处无限等待,因为没有人去 Signal 它。
    fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

    if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
        vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphore) != VK_SUCCESS ||
        vkCreateFence(device, &fenceInfo, nullptr, &inFlightFence) != VK_SUCCESS) {
        throw std::runtime_error("failed to create synchronization objects for a frame!");
    }
}

别忘了在 cleanup 中销毁它们:

cpp 复制代码
vkDestroySemaphore(device, renderFinishedSemaphore, nullptr);
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
vkDestroyFence(device, inFlightFence, nullptr);

核心逻辑:drawFrame

这是我们每一帧都要调用的函数。它的逻辑必须非常严密。

cpp 复制代码
void drawFrame() {
    // 1. 等待上一帧结束 (CPU 阻塞等待 Fence)
    // 参数:device, fence数量, fence指针, waitAll, timeout
    vkWaitForFences(device, 1, &inFlightFence, VK_TRUE, UINT64_MAX);

    // 2. 从 Swap Chain 获取一张图像
    uint32_t imageIndex;
    // timeout: UINT64_MAX 表示无限等待直到有图可用
    // imageAvailableSemaphore: 当图准备好时,Vulkan 会发出这个信号量
    VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);

    if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
        throw std::runtime_error("failed to acquire swap chain image!");
    }

    // 3. 重置 Fence (手动将其设为 Unsignaled 状态)
    // 只有当我们确信要开始绘制新的一帧时才重置它
    vkResetFences(device, 1, &inFlightFence);

    // 4. 重置并录制 Command Buffer
    vkResetCommandBuffer(commandBuffer, 0);
    recordCommandBuffer(commandBuffer, imageIndex);

    // 5. 提交命令队列 (Submit)
    VkSubmitInfo submitInfo{};
    submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

    // 等待哪个信号量?(等待获取图像成功)
    VkSemaphore waitSemaphores[] = {imageAvailableSemaphore};
    // 在管线的哪个阶段等待?(在写入颜色附件之前等待,这意味着顶点着色器可以提前跑,不需等待)
    VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
    submitInfo.waitSemaphoreCount = 1;
    submitInfo.pWaitSemaphores = waitSemaphores;
    submitInfo.pWaitDstStageMask = waitStages;

    // 提交哪个 Command Buffer?
    submitInfo.commandBufferCount = 1;
    submitInfo.pCommandBuffers = &commandBuffer;

    // 执行完发出哪个信号量?(发出渲染完成信号)
    VkSemaphore signalSemaphores[] = {renderFinishedSemaphore};
    submitInfo.signalSemaphoreCount = 1;
    submitInfo.pSignalSemaphores = signalSemaphores;

    // 提交!并告诉 GPU:跑完了记得把 inFlightFence 打开 (Signal Fence)
    if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFence) != VK_SUCCESS) {
        throw std::runtime_error("failed to submit draw command buffer!");
    }

    // 6. 显示结果 (Present)
    VkPresentInfoKHR presentInfo{};
    presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

    // 等待渲染完成信号量
    presentInfo.waitSemaphoreCount = 1;
    presentInfo.pWaitSemaphores = signalSemaphores;

    // 指定交换链和图片索引
    VkSwapchainKHR swapChains[] = {swapChain};
    presentInfo.swapchainCount = 1;
    presentInfo.pSwapchains = swapChains;
    presentInfo.pImageIndices = &imageIndex;

    // 请求显示
    vkQueuePresentKHR(presentQueue, &presentInfo);
}

启动引擎:主循环

回到 initWindow 之后的 mainLoop 函数,把 drawFrame 放进去。

cpp 复制代码
void mainLoop() {
    while (!glfwWindowShouldClose(window)) {
        glfwPollEvents(); // 处理鼠标键盘事件
        drawFrame();      // 画一帧
    }

    // 重要!退出循环时,GPU 可能还在画画。
    // 等待设备空闲后再销毁资源,否则会崩溃。
    vkDeviceWaitIdle(device);
}

确保 initVulkan 中调用了 createSyncObjects()

cpp 复制代码
void initVulkan() {
    // ...
    createCommandBuffer();
    createSyncObjects(); // <--- 新增
}

完整代码:

C++:

cpp 复制代码
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#include <iostream>
#include <fstream>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <cstdint>
#include <limits>
#include <optional>
#include <set>

const uint32_t WIDTH = 800;
const uint32_t HEIGHT = 600;

const int MAX_FRAMES_IN_FLIGHT = 3;

const std::vector<const char*> validationLayers = {
    "VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
    VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
    auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
    } else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
    if (func != nullptr) {
        func(instance, debugMessenger, pAllocator);
    }
}

struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;
    std::optional<uint32_t> presentFamily;

    bool isComplete() {
        return graphicsFamily.has_value() && presentFamily.has_value();
    }
};

struct SwapChainSupportDetails {
    VkSurfaceCapabilitiesKHR capabilities;
    std::vector<VkSurfaceFormatKHR> formats;
    std::vector<VkPresentModeKHR> presentModes;
};

class HelloTriangleApplication {
public:
    void run() {
        initWindow();
        initVulkan();
        mainLoop();
        cleanup();
    }

private:
    GLFWwindow* window;

    VkInstance instance;
    VkDebugUtilsMessengerEXT debugMessenger;
    VkSurfaceKHR surface;

    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
    VkDevice device;

    VkQueue graphicsQueue;
    VkQueue presentQueue;

    VkSwapchainKHR swapChain;
    std::vector<VkImage> swapChainImages;
    VkFormat swapChainImageFormat;
    VkExtent2D swapChainExtent;
    std::vector<VkImageView> swapChainImageViews;
    std::vector<VkFramebuffer> swapChainFramebuffers;

    VkRenderPass renderPass;
    VkPipelineLayout pipelineLayout;
    VkPipeline graphicsPipeline;

    VkCommandPool commandPool;
    VkCommandBuffer commandBuffer;

    VkSemaphore imageAvailableSemaphore;
    VkSemaphore renderFinishedSemaphore;
    VkFence inFlightFence;

    void initWindow() {
        glfwInit();

        glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
        glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

        window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
    }

    void initVulkan() {
        createInstance();
        setupDebugMessenger();
        createSurface();
        pickPhysicalDevice();
        createLogicalDevice();
        createSwapChain();
        createImageViews();
        createRenderPass();
        createGraphicsPipeline();
        createFramebuffers();
        createCommandPool();
        createCommandBuffer();
        createSyncObjects();
    }

    void mainLoop() {
        while (!glfwWindowShouldClose(window)) {
            glfwPollEvents();
            drawFrame();
        }

        vkDeviceWaitIdle(device);
    }

    void cleanup() {
        vkDestroySemaphore(device, renderFinishedSemaphore, nullptr);
        vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
        vkDestroyFence(device, inFlightFence, nullptr);

        vkDestroyCommandPool(device, commandPool, nullptr);

        for (auto framebuffer : swapChainFramebuffers) {
            vkDestroyFramebuffer(device, framebuffer, nullptr);
        }

        vkDestroyPipeline(device, graphicsPipeline, nullptr);
        vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
        vkDestroyRenderPass(device, renderPass, nullptr);

        for (auto imageView : swapChainImageViews) {
            vkDestroyImageView(device, imageView, nullptr);
        }

        vkDestroySwapchainKHR(device, swapChain, nullptr);
        vkDestroyDevice(device, nullptr);

        if (enableValidationLayers) {
            DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
        }

        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);

        glfwDestroyWindow(window);

        glfwTerminate();
    }

    void createInstance() {
        if (enableValidationLayers && !checkValidationLayerSupport()) {
            throw std::runtime_error("validation layers requested, but not available!");
        }

        VkApplicationInfo appInfo{};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;

        VkInstanceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;

        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();

        VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();

            populateDebugMessengerCreateInfo(debugCreateInfo);
            createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
        } else {
            createInfo.enabledLayerCount = 0;

            createInfo.pNext = nullptr;
        }

        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }

    void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
        createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
        createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
        createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
        createInfo.pfnUserCallback = debugCallback;
    }

    void setupDebugMessenger() {
        if (!enableValidationLayers) return;

        VkDebugUtilsMessengerCreateInfoEXT createInfo;
        populateDebugMessengerCreateInfo(createInfo);

        if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
            throw std::runtime_error("failed to set up debug messenger!");
        }
    }

    void createSurface() {
        if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
            throw std::runtime_error("failed to create window surface!");
        }
    }

    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }

        std::vector<VkPhysicalDevice> devices(deviceCount);
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

        for (const auto& device : devices) {
            if (isDeviceSuitable(device)) {
                physicalDevice = device;
                break;
            }
        }

        if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }

    void createLogicalDevice() {
        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

        std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
        std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};

        float queuePriority = 1.0f;
        for (uint32_t queueFamily : uniqueQueueFamilies) {
            VkDeviceQueueCreateInfo queueCreateInfo{};
            queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
            queueCreateInfo.queueFamilyIndex = queueFamily;
            queueCreateInfo.queueCount = 1;
            queueCreateInfo.pQueuePriorities = &queuePriority;
            queueCreateInfos.push_back(queueCreateInfo);
        }

        VkPhysicalDeviceFeatures deviceFeatures{};

        VkDeviceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

        createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
        createInfo.pQueueCreateInfos = queueCreateInfos.data();

        createInfo.pEnabledFeatures = &deviceFeatures;

        createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
        createInfo.ppEnabledExtensionNames = deviceExtensions.data();

        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();
        } else {
            createInfo.enabledLayerCount = 0;
        }

        if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
            throw std::runtime_error("failed to create logical device!");
        }

        vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
        vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
    }

    void createSwapChain() {
        SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

        VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
        VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
        VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

        uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
        if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
            imageCount = swapChainSupport.capabilities.maxImageCount;
        }

        VkSwapchainCreateInfoKHR createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
        createInfo.surface = surface;

        createInfo.minImageCount = imageCount;
        createInfo.imageFormat = surfaceFormat.format;
        createInfo.imageColorSpace = surfaceFormat.colorSpace;
        createInfo.imageExtent = extent;
        createInfo.imageArrayLayers = 1;
        createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
        uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()};

        if (indices.graphicsFamily != indices.presentFamily) {
            createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
            createInfo.queueFamilyIndexCount = 2;
            createInfo.pQueueFamilyIndices = queueFamilyIndices;
        } else {
            createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
        }

        createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
        createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
        createInfo.presentMode = presentMode;
        createInfo.clipped = VK_TRUE;

        createInfo.oldSwapchain = VK_NULL_HANDLE;

        if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
            throw std::runtime_error("failed to create swap chain!");
        }

        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
        swapChainImages.resize(imageCount);
        vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());

        swapChainImageFormat = surfaceFormat.format;
        swapChainExtent = extent;
    }

    void createImageViews() {
        swapChainImageViews.resize(swapChainImages.size());

        for (size_t i = 0; i < swapChainImages.size(); i++) {
            VkImageViewCreateInfo createInfo{};
            createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
            createInfo.image = swapChainImages[i];
            createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
            createInfo.format = swapChainImageFormat;
            createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
            createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
            createInfo.subresourceRange.baseMipLevel = 0;
            createInfo.subresourceRange.levelCount = 1;
            createInfo.subresourceRange.baseArrayLayer = 0;
            createInfo.subresourceRange.layerCount = 1;

            if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create image views!");
            }
        }
    }

    void createRenderPass() {
        VkAttachmentDescription colorAttachment{};
        colorAttachment.format = swapChainImageFormat;
        colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
        colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
        colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
        colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
        colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
        colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
        colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

        VkAttachmentReference colorAttachmentRef{};
        colorAttachmentRef.attachment = 0;
        colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

        VkSubpassDescription subpass{};
        subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
        subpass.colorAttachmentCount = 1;
        subpass.pColorAttachments = &colorAttachmentRef;

        VkSubpassDependency dependency{};
        dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
        dependency.dstSubpass = 0;
        dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.srcAccessMask = 0;
        dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
        dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

        VkRenderPassCreateInfo renderPassInfo{};
        renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
        renderPassInfo.attachmentCount = 1;
        renderPassInfo.pAttachments = &colorAttachment;
        renderPassInfo.subpassCount = 1;
        renderPassInfo.pSubpasses = &subpass;
        renderPassInfo.dependencyCount = 1;
        renderPassInfo.pDependencies = &dependency;

        if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
            throw std::runtime_error("failed to create render pass!");
        }
    }

    void createGraphicsPipeline() {
        auto vertShaderCode = readFile("shaders/vert.spv");
        auto fragShaderCode = readFile("shaders/frag.spv");

        VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
        VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

        VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
        vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
        vertShaderStageInfo.module = vertShaderModule;
        vertShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
        fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
        fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
        fragShaderStageInfo.module = fragShaderModule;
        fragShaderStageInfo.pName = "main";

        VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};

        VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
        vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
        vertexInputInfo.vertexBindingDescriptionCount = 0;
        vertexInputInfo.vertexAttributeDescriptionCount = 0;

        VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
        inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
        inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
        inputAssembly.primitiveRestartEnable = VK_FALSE;

        VkPipelineViewportStateCreateInfo viewportState{};
        viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
        viewportState.viewportCount = 1;
        viewportState.scissorCount = 1;

        VkPipelineRasterizationStateCreateInfo rasterizer{};
        rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
        rasterizer.depthClampEnable = VK_FALSE;
        rasterizer.rasterizerDiscardEnable = VK_FALSE;
        rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
        rasterizer.lineWidth = 1.0f;
        rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
        rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
        rasterizer.depthBiasEnable = VK_FALSE;

        VkPipelineMultisampleStateCreateInfo multisampling{};
        multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
        multisampling.sampleShadingEnable = VK_FALSE;
        multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;

        VkPipelineColorBlendAttachmentState colorBlendAttachment{};
        colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
        colorBlendAttachment.blendEnable = VK_FALSE;

        VkPipelineColorBlendStateCreateInfo colorBlending{};
        colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
        colorBlending.logicOpEnable = VK_FALSE;
        colorBlending.logicOp = VK_LOGIC_OP_COPY;
        colorBlending.attachmentCount = 1;
        colorBlending.pAttachments = &colorBlendAttachment;
        colorBlending.blendConstants[0] = 0.0f;
        colorBlending.blendConstants[1] = 0.0f;
        colorBlending.blendConstants[2] = 0.0f;
        colorBlending.blendConstants[3] = 0.0f;

        std::vector<VkDynamicState> dynamicStates = {
            VK_DYNAMIC_STATE_VIEWPORT,
            VK_DYNAMIC_STATE_SCISSOR
        };
        VkPipelineDynamicStateCreateInfo dynamicState{};
        dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
        dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
        dynamicState.pDynamicStates = dynamicStates.data();

        VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
        pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
        pipelineLayoutInfo.setLayoutCount = 0;
        pipelineLayoutInfo.pushConstantRangeCount = 0;

        if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
            throw std::runtime_error("failed to create pipeline layout!");
        }

        VkGraphicsPipelineCreateInfo pipelineInfo{};
        pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
        pipelineInfo.stageCount = 2;
        pipelineInfo.pStages = shaderStages;
        pipelineInfo.pVertexInputState = &vertexInputInfo;
        pipelineInfo.pInputAssemblyState = &inputAssembly;
        pipelineInfo.pViewportState = &viewportState;
        pipelineInfo.pRasterizationState = &rasterizer;
        pipelineInfo.pMultisampleState = &multisampling;
        pipelineInfo.pColorBlendState = &colorBlending;
        pipelineInfo.pDynamicState = &dynamicState;
        pipelineInfo.layout = pipelineLayout;
        pipelineInfo.renderPass = renderPass;
        pipelineInfo.subpass = 0;
        pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;

        if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
            throw std::runtime_error("failed to create graphics pipeline!");
        }

        vkDestroyShaderModule(device, fragShaderModule, nullptr);
        vkDestroyShaderModule(device, vertShaderModule, nullptr);
    }

    void createFramebuffers() {
        swapChainFramebuffers.resize(swapChainImageViews.size());

        for (size_t i = 0; i < swapChainImageViews.size(); i++) {
            VkImageView attachments[] = {
                swapChainImageViews[i]
            };

            VkFramebufferCreateInfo framebufferInfo{};
            framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
            framebufferInfo.renderPass = renderPass;
            framebufferInfo.attachmentCount = 1;
            framebufferInfo.pAttachments = attachments;
            framebufferInfo.width = swapChainExtent.width;
            framebufferInfo.height = swapChainExtent.height;
            framebufferInfo.layers = 1;

            if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
                throw std::runtime_error("failed to create framebuffer!");
            }
        }
    }

    void createCommandPool() {
        QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

        VkCommandPoolCreateInfo poolInfo{};
        poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
        poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
        poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();

        if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
            throw std::runtime_error("failed to create command pool!");
        }
    }

    void createCommandBuffer() {
        VkCommandBufferAllocateInfo allocInfo{};
        allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
        allocInfo.commandPool = commandPool;
        allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
        allocInfo.commandBufferCount = 1;

        if (vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer) != VK_SUCCESS) {
            throw std::runtime_error("failed to allocate command buffers!");
        }
    }

    void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
        VkCommandBufferBeginInfo beginInfo{};
        beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;

        if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
            throw std::runtime_error("failed to begin recording command buffer!");
        }

        VkRenderPassBeginInfo renderPassInfo{};
        renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
        renderPassInfo.renderPass = renderPass;
        renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
        renderPassInfo.renderArea.offset = {0, 0};
        renderPassInfo.renderArea.extent = swapChainExtent;

        VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
        renderPassInfo.clearValueCount = 1;
        renderPassInfo.pClearValues = &clearColor;

        vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

        vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

        VkViewport viewport{};
        viewport.x = 0.0f;
        viewport.y = 0.0f;
        viewport.width = static_cast<float>(swapChainExtent.width);
        viewport.height = static_cast<float>(swapChainExtent.height);
        viewport.minDepth = 0.0f;
        viewport.maxDepth = 1.0f;
        vkCmdSetViewport(commandBuffer, 0, 1, &viewport);

        VkRect2D scissor{};
        scissor.offset = {0, 0};
        scissor.extent = swapChainExtent;
        vkCmdSetScissor(commandBuffer, 0, 1, &scissor);

        vkCmdDraw(commandBuffer, 3, 1, 0, 0);

        vkCmdEndRenderPass(commandBuffer);

        if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
            throw std::runtime_error("failed to record command buffer!");
        }
    }

    void createSyncObjects() {
        VkSemaphoreCreateInfo semaphoreInfo{};
        semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

        VkFenceCreateInfo fenceInfo{};
        fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
        fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

        if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphore) != VK_SUCCESS ||
            vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphore) != VK_SUCCESS ||
            vkCreateFence(device, &fenceInfo, nullptr, &inFlightFence) != VK_SUCCESS) {
            throw std::runtime_error("failed to create synchronization objects for a frame!");
        }

    }

    void drawFrame() {
        vkWaitForFences(device, 1, &inFlightFence, VK_TRUE, UINT64_MAX);
        vkResetFences(device, 1, &inFlightFence);

        uint32_t imageIndex;
        vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex);

        vkResetCommandBuffer(commandBuffer, /*VkCommandBufferResetFlagBits*/ 0);
        recordCommandBuffer(commandBuffer, imageIndex);

        VkSubmitInfo submitInfo{};
        submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

        VkSemaphore waitSemaphores[] = {imageAvailableSemaphore};
        VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
        submitInfo.waitSemaphoreCount = 1;
        submitInfo.pWaitSemaphores = waitSemaphores;
        submitInfo.pWaitDstStageMask = waitStages;

        submitInfo.commandBufferCount = 1;
        submitInfo.pCommandBuffers = &commandBuffer;

        VkSemaphore signalSemaphores[] = {renderFinishedSemaphore};
        submitInfo.signalSemaphoreCount = 1;
        submitInfo.pSignalSemaphores = signalSemaphores;

        if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFence) != VK_SUCCESS) {
            throw std::runtime_error("failed to submit draw command buffer!");
        }

        VkPresentInfoKHR presentInfo{};
        presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

        presentInfo.waitSemaphoreCount = 1;
        presentInfo.pWaitSemaphores = signalSemaphores;

        VkSwapchainKHR swapChains[] = {swapChain};
        presentInfo.swapchainCount = 1;
        presentInfo.pSwapchains = swapChains;

        presentInfo.pImageIndices = &imageIndex;

        vkQueuePresentKHR(presentQueue, &presentInfo);
    }

    VkShaderModule createShaderModule(const std::vector<char>& code) {
        VkShaderModuleCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
        createInfo.codeSize = code.size();
        createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

        VkShaderModule shaderModule;
        if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
            throw std::runtime_error("failed to create shader module!");
        }

        return shaderModule;
    }

    VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
        for (const auto& availableFormat : availableFormats) {
            if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
                return availableFormat;
            }
        }

        return availableFormats[0];
    }

    VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
        for (const auto& availablePresentMode : availablePresentModes) {
            if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
                return availablePresentMode;
            }
        }

        return VK_PRESENT_MODE_FIFO_KHR;
    }

    VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
        if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
            return capabilities.currentExtent;
        } else {
            int width, height;
            glfwGetFramebufferSize(window, &width, &height);

            VkExtent2D actualExtent = {
                static_cast<uint32_t>(width),
                static_cast<uint32_t>(height)
            };

            actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width);
            actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height);

            return actualExtent;
        }
    }

    SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
        SwapChainSupportDetails details;

        vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

        uint32_t formatCount;
        vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

        if (formatCount != 0) {
            details.formats.resize(formatCount);
            vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
        }

        uint32_t presentModeCount;
        vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

        if (presentModeCount != 0) {
            details.presentModes.resize(presentModeCount);
            vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
        }

        return details;
    }

    bool isDeviceSuitable(VkPhysicalDevice device) {
        QueueFamilyIndices indices = findQueueFamilies(device);

        bool extensionsSupported = checkDeviceExtensionSupport(device);

        bool swapChainAdequate = false;
        if (extensionsSupported) {
            SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
            swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
        }

        return indices.isComplete() && extensionsSupported && swapChainAdequate;
    }

    bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
        uint32_t extensionCount;
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

        std::vector<VkExtensionProperties> availableExtensions(extensionCount);
        vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

        std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

        for (const auto& extension : availableExtensions) {
            requiredExtensions.erase(extension.extensionName);
        }

        return requiredExtensions.empty();
    }

    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
        QueueFamilyIndices indices;

        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
            }

            VkBool32 presentSupport = false;
            vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

            if (presentSupport) {
                indices.presentFamily = i;
            }

            if (indices.isComplete()) {
                break;
            }

            i++;
        }

        return indices;
    }

    std::vector<const char*> getRequiredExtensions() {
        uint32_t glfwExtensionCount = 0;
        const char** glfwExtensions;
        glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

        std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

        if (enableValidationLayers) {
            extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
        }

        return extensions;
    }

    bool checkValidationLayerSupport() {
        uint32_t layerCount;
        vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

        std::vector<VkLayerProperties> availableLayers(layerCount);
        vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

        for (const char* layerName : validationLayers) {
            bool layerFound = false;

            for (const auto& layerProperties : availableLayers) {
                if (strcmp(layerName, layerProperties.layerName) == 0) {
                    layerFound = true;
                    break;
                }
            }

            if (!layerFound) {
                return false;
            }
        }

        return true;
    }

    static std::vector<char> readFile(const std::string& filename) {
        std::ifstream file(filename, std::ios::ate | std::ios::binary);

        if (!file.is_open()) {
            throw std::runtime_error("failed to open file!");
        }

        size_t fileSize = (size_t) file.tellg();
        std::vector<char> buffer(fileSize);

        file.seekg(0);
        file.read(buffer.data(), fileSize);

        file.close();

        return buffer;
    }

    static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
        std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

        return VK_FALSE;
    }
};

int main() {
    HelloTriangleApplication app;

    try {
        app.run();
    } catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}

shader.vert:

cpp 复制代码
#version 450

layout(location = 0) out vec3 fragColor;

vec2 positions[3] = vec2[](
    vec2(0.0, -0.5),
    vec2(0.5, 0.5),
    vec2(-0.5, 0.5)
);

vec3 colors[3] = vec3[](
    vec3(1.0, 0.0, 0.0),
    vec3(0.0, 1.0, 0.0),
    vec3(0.0, 0.0, 1.0)
);

void main() {
    gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
    fragColor = colors[gl_VertexIndex];
}

shader.frag:

cpp 复制代码
#version 450

layout(location = 0) in vec3 fragColor;

layout(location = 0) out vec4 outColor;

void main() {
    outColor = vec4(fragColor, 1.0);
}

见证奇迹

现在,深呼吸,按下 F5 (运行)

如果一切顺利,你不会再看到那个令人绝望的黑窗口了。你会看到:

一个彩色的三角形,静静地悬浮在深灰色的背景中。

虽然它只是一个简单的三角形,但为了画出它,你:

  • 手动连接了显卡驱动。

  • 分配了显存。

  • 编写并编译了 Shader。

  • 配置了整条渲染管线。

  • 建立了复杂的同步机制。

这不仅仅是一个三角形,这是你对 GPU 拥有绝对控制权的证明。


常见问题排查

  • 程序直接崩溃? 检查 Validation Layers 的输出。最常见的是 DrawFrame 里的同步对象没创建,或者 vkQueueSubmit 里的参数填错了。

  • 屏幕闪烁? 可能是 Presentation Mode 选错了,或者 Fence 逻辑有问题。

  • 三角形也是黑的? 检查 fragment shader 的输出颜色,或者 RenderPass 的 loadOp 是否设为了 Clear。

下一步

你现在完成了一个 Vulkan 的 "Hello World"。但是,现在的代码还有一个小问题:它极其浪费性能

因为我们用 vkWaitForFences 强制 CPU 等待 GPU 完成每一帧。这意味着 CPU 和 GPU 是串行工作的,无法并行。

为了让帧率起飞,我们需要实现 Frames in Flight (多帧并行) ------ 让 CPU 在 GPU 画第一帧的时候,去录制第二帧的命令。

下一篇,我们将优化这个循环,让你的三角形跑得飞快!准备好了吗?

详见:Rendering and presentation - Vulkan Tutorial

相关推荐
狗狗学不会2 小时前
Pybind11 封装 RK3588 全流程服务:Python 写逻辑,C++ 跑并发,性能起飞!
c++·人工智能·python·目标检测
DYS_房东的猫2 小时前
《 C++ 零基础入门教程》第10章:C++20 核心特性 —— 编写更现代、更优雅的 C++
java·c++·c++20
HelloRevit2 小时前
Windows Server SMB 共享文件 回收站
windows·c#
Howrun7772 小时前
虚幻引擎_AController_APlayerController_AAIController
开发语言·c++·游戏引擎·虚幻
醇氧2 小时前
【Windows】安装mysql8
数据库·windows·mysql
小林rr2 小时前
深入探索 C++:现代特性、工程实践与性能优化全解
java·c++·性能优化
羊小猪~~2 小时前
【QT】-- QT基础类
开发语言·c++·后端·stm32·单片机·qt
十月不到底3 小时前
Windows 上安装 Volta
windows·npm
努力写代码的熊大3 小时前
深入探索C++关联容器:Set、Map、Multiset与Multimap的终极指南及底层实现剖析
开发语言·c++