Langgraph_通过playwright mcp执行自动化

python 复制代码
from langchain_core.messages import HumanMessage
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_mcp_adapters.tools import load_mcp_tools
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from langchain_openai import ChatOpenAI
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.prebuilt import ToolNode
import asyncio
import os
from dotenv import load_dotenv
'''
    执行脚本时需要确定api_key是否有效
'''
load_dotenv("../.env")
api_key = os.getenv("API_KEY")


# 定义状态
class MyState(TypedDict):
    messages: Annotated[list, add_messages]

# 定义 agent 结点
def agent(state: MyState) -> MyState:
    return {"messages": [model.invoke(state["messages"])]}

# LLM 是否调用工具
def is_call_tools(state: MyState) -> bool:
    last_message = state["messages"][-1]
    if last_message.tool_calls:
        return True
    return False

# 定义 mcp server 参数
mcp_server_param = [
    StdioServerParameters(
        command="npx",
        args=["@playwright/mcp@latest"],
        env=None
    )
]

# 声明模型
model = ChatOpenAI(
    model_name="Qwen3-Coder-Plus",  # deepseek-chat
    openai_api_key=api_key, # 填写 api-key
    openai_api_base="https://apis.iflow.cn/v1" # 填写 base-url,https://api.deepseek.com
)

async def main():
    try:
        async with stdio_client(mcp_server_param[0]) as (read, write):
            async with ClientSession(read, write) as session:
                # 绑定工具
                await session.initialize()
                tools = await load_mcp_tools(session)
                print("tools:", [tool.name for tool in tools])
                global model
                model = model.bind_tools(tools)

                # 定义图结构
                workflow = StateGraph(MyState)
                workflow.add_node("agent", agent)
                workflow.add_node("tools", ToolNode(tools=tools))
                workflow.add_edge(START, "agent")
                workflow.add_conditional_edges("agent", is_call_tools, {
                    True: "tools",
                    False: END
                })
                workflow.add_edge("tools", "agent")

                # 构建图
                graph = workflow.compile()
                # 调用图
                baidu_state = await graph.ainvoke({"messages": [HumanMessage("打开百度首页,然后搜索ai agent")]})
                print("Baidu result:", baidu_state['messages'][-1].content)

    except Exception as e:
        print(f"Error occurred: {e}")
        # Handle the exception gracefully


if __name__ == '__main__':
    asyncio.run(main())

说明: 执行脚本时若打开浏览器即关闭,出现 Error occurred: unhandled errors in a TaskGroup (1 sub-exception),则执行pip install playwright即可解决

复制代码
相关推荐
清 澜1 小时前
大模型扫盲式面试知识复习 (二)
人工智能·面试·职场和发展·大模型
kevin 11 小时前
财务审核场景全覆盖,AI智能审核,自然语言配置规则
人工智能
jieshenai1 小时前
BERT_Experiment_Template 多种模型与数据集加载,训练、参数保存与评估,适合论文实验的代码模板项目
人工智能·深度学习·bert
蝎蟹居2 小时前
GBT 4706.1-2024逐句解读系列(25) 第7.5条款:不同电压功率需清晰明确
人工智能·单片机·嵌入式硬件·物联网·安全
Mintopia2 小时前
😎 HTTP/2 中的 HPACK 压缩原理全揭秘
前端·人工智能·aigc
阿里云大数据AI技术2 小时前
EMR AI 助手再升级:支持 Serverless StarRocks
人工智能
bing.shao2 小时前
golang 做AI任务链的优势和场景
开发语言·人工智能·golang
知乎的哥廷根数学学派2 小时前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
deephub2 小时前
Agentic Memory 实践:用 agents.md 实现 LLM 持续学习
人工智能·大语言模型·agent