参数化曲线弧长公式推导

参数化曲线的弧长公式推导,核心是微元法------将曲线分割为无数微小线段,用直线段近似微元弧长,再通过积分累加得到总弧长,以下是针对二维参数曲线的完整推导过程:

  1. 曲线参数化定义

设二维曲线的参数方程为

\begin{cases}

x = x(t) \\

y = y(t)

\end{cases}

\quad t\in[t_0,t_1]

其中 t 为参数(如时间、归一化长度等),函数 x(t),y(t) 在区间 [t_0,t_1] 上连续可导。

  1. 弧长微元的推导

取参数区间内的一个微小增量 \Delta t,对应曲线上的两点 P(t)=(x(t),y(t)) 和 P(t+\Delta t)=(x(t+\Delta t),y(t+\Delta t))。

  • 两点在 x 方向的增量:\Delta x = x(t+\Delta t)-x(t)

  • 两点在 y 方向的增量:\Delta y = y(t+\Delta t)-y(t)

根据勾股定理,两点间的直线段长度为

\Delta L \approx \sqrt{(\Delta x)^2+(\Delta y)^2}

当 \Delta t \to 0 时,\Delta x \approx \dot{x}(t)\cdot dt,\Delta y \approx \dot{y}(t)\cdot dt(\dot{x}=\frac{dx}{dt},\dot{y}=\frac{dy}{dt} 为参数导数),此时直线段长度无限趋近于曲线微元长度 ds,代入得:

ds = \sqrt{(\dot{x}(t)dt)^2+(\dot{y}(t)dt)^2} = \sqrt{\dot{x}(t)^2+\dot{y}(t)^2}\cdot dt

  1. 总弧长的积分表示

总弧长是弧长微元 ds 在参数区间 [t_0,t_1] 上的积分,即

L = \int_{t_0}^{t_1} ds = \int_{t_0}^{t_1}\sqrt{\dot{x}(t)^2+\dot{y}(t)^2}\;dt

  1. 三维参数曲线的扩展

对于三维参数曲线 x=x(t),y=y(t),z=z(t),同理可得弧长公式:

L = \int_{t_0}^{t_1}\sqrt{\dot{x}(t)^2+\dot{y}(t)^2+\dot{z}(t)^2}\;dt

相关推荐
琹箐1 天前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia11 天前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了1 天前
数据结构之树(Java实现)
java·算法
算法备案代理1 天前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.1 天前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦1 天前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总1 天前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow68891 天前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法
wangjialelele1 天前
平衡二叉搜索树:AVL树和红黑树
java·c语言·开发语言·数据结构·c++·算法·深度优先
驱动探索者1 天前
linux mailbox 学习
linux·学习·算法