数据科学每日总结--Day44--机器学习

机器学习是近年来流行的人工智能技术的一个分支。机器学习模型和技术已经被广泛地用于许多领域,如自然语言理解、机器视觉和模式识别。

人工智能(AI)是指在编程为像人类一样思考并模拟其行为的机器中模拟人类智能。而机器学习是一种数据分析方法,即自动生成分析模型。它是人工智能的一个分支,基于系统从数据中学习的而诞生的想法和识别模式,在最少的人工干预下做出决策。这些年机器学习的技术迭代的很快,原因是GPU和TPU的发展,可以同时进行很多任务

平时听到的深度学习是机器学习的一个分支,后者是通过算法从数据中学习规律,前者是通过深层神经网络在数据中学习多层次的特征表示,可以看做是方法的具象化。下面我们来了解一下机器学习是什么

简介

机器学习,从本质上来看,就是通过分析数据,结合数据的标签(是后续要预测的东西,可以是小麦的未来价格,所示的动物类型或者其他)和特征(输入变量,是从数据中观测或处理出来的信息)建立一个分析模型,这其实就是我们平时所说的训练,通过不断测 试,建立一个好的分析模型,然后通过一个未知的测试数据集,来预测数据的标签。

一般机器学习分为监督学习,无监督学习,强化学习。

  • 监督学习:目的是学习从输入到输出的映射规则,以便对新的输入做出正确的预测,简单地说就是有标准答案的学习,是研究特征和标签之间的关系,一般用于房价预测,疾病诊断;

  • 无监督学习:目的是发现数据内部隐藏的结构、模式或关系,因为给模型提供的数据只有特征没有标签,相当于在给书做分类时,必须要先看书,知道书是干什么的才能去分类,这个过程需要算法自己来搞定,一般用于数据压缩和异常检测;

  • 强化学习:通过试错和奖励来学习,目的是学习一套行为策略,从而能够最大化地累计得到奖励。具体是在某个环境中采取行动,环境给予奖励或惩罚作为反馈,通过不断尝试,知道做什么最有可能得到奖励,一般应用于自动驾驶,游戏AI策略

相关推荐
这张生成的图像能检测吗2 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型2 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd3 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白3 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_804 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20204 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid5 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
ballball~~5 小时前
拉普拉斯金字塔
算法·机器学习
Cemtery1165 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习